

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.
Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2013 - All rights reserved

MatrixSSL Elliptic Curve

Cipher Suites

 2 © INSIDE Secure - 2013 - All rights reserved

TABLE OF CONTENTS

1	
 ELLIPTIC CURVE CRYPTOGRAPHY .. 3	

2	
 ECC CIPHER SUITES ... 4	

2.1 Variations ... 4	

2.1.1 ECDHE_ECDSA .. 4	

2.1.2 ECDHE_RSA ... 4	

2.1.3 ECDH_ECDSA .. 4	

2.1.4 ECDH_RSA ... 4	

2.2 Support in MatrixSSL ... 4	

3	
 WHEN ECC CIPHER SUITES ARE A GOOD ALTERNATIVE ... 5	

4	
 API .. 6	

4.1 matrixSslLoadEcKeys .. 6	

4.2 matrixSslLoadEcKeysMem .. 8	

 3 © INSIDE Secure - 2013 - All rights reserved

1 ELLIPTIC CURVE CRYPTOGRAPHY
This document describes the use of Elliptic Curve Cryptography within the TLS protocol and how to utilize
ECC cipher suites within MatrixSSL server and client applications.

ECC is a public key cryptographic algorithm that competes with RSA and Diffie-Hellman to perform key
exchange and authentication. Key exchange is performed by ECC using a Diffie-Hellman variant and is
abbreviated as ECDH. Authentication is performed by ECC using a Digital Signature Algorithm variant and
is abbreviated as ECDSA. The appeal to some security implementers is that the mathematical properties
of elliptic curves enable an equivalent strength security to RSA and DH while having smaller key sizes.
This table can often be found in comparisons between the algorithms.

Equivalent Strength of Key Sizes (bits)

ECC	
 RSA/DH	

163	
 1024	

233	
 2048	

283	
 3072	

409	
 7680	

571	
 15360	

In authentication performance metrics head-to-head with RSA using the key sizes in the above table, the
smaller key sizes of ECDSA translate into must faster key generation and slightly faster signature creation.
However, RSA is much faster performing a signature validation operation.

In key exchange performance metrics head-to-head with DH, ECDH is always much higher performance.
Guidelines on when to use ECC in TLS are given in the sections to follow.

The ECC algorithm must take into account the specific curve from which the keys were derived.
MatrixSSL supports these NIST-recommended named prime field curves and Brainpool curves.

 secp192r1
 secp224r1
 secp256r1
 secp384r1
 secp521r1
 brainpool256r1
 brainpool384r1
 brainpool512r1

These curve restrictions apply to both the EC keys within the certificate material and for the ECDHE key
generation.

 4 © INSIDE Secure - 2013 - All rights reserved

2 ECC CIPHER SUITES
There are four different ECC cipher suite types available in the TLS protocol. They vary according to the
cryptographic algorithms that will be used for key exchange and authentication (digital signature). Key
exchange will always be ECDH but can either be ephemeral (ECDHE) or fixed DH. Ephemeral mode
requires that new public key pairs be generated each connection so they are typically much slower than
fixed mode. Authentication can either be RSA or ECDSA. The choice of cipher suite will determine what
types of certificate and keys must be loaded at application initialization. Each cipher suite type is outlined
here.

2.1 Variations
2.1.1 ECDHE_ECDSA
Ephemeral ECDH key exchange with ECDSA signatures. These cipher suite types require ECC keys for
the server as well as the signing Certificate Authority.

2.1.2 ECDHE_RSA
Ephemeral ECDH key exchange with RSA signatures. Because the key exchange is ephemeral these
cipher suite types allow the user to use existing RSA keys and certificates on both the clients and servers.

2.1.3 ECDH_ECDSA
Fixed ECDH with ECDSA-signed certificates. These cipher suite types require ECC keys for the server as
well as the signing Certificate Authority.

2.1.4 ECDH_RSA
Fixed ECDH with RSA-signed certificates require both types of public keys to be used. These cipher suite
types require ECC keys for the server certificate but an existing RSA Certificate Authority will have used its
RSA key to sign that certificate. The intent of this cipher suite is to enable existing trusted RSA CAs to
remain in place while allowing servers to use the faster signature creation of ECC.

2.2 Support in MatrixSSL
The define USE_ECC must be enabled in the cryptoConfig.h header file to compile in Elliptic Curve
cryptography support.

The user must also enable each of the ECC cipher suites that are desired. These defines are also listed in
the matrixsslConfig.h file and are disabled by default. Below is a representative list of the available cipher
suites. The full list can be found in the header file.

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA

 5 © INSIDE Secure - 2013 - All rights reserved

3 WHEN ECC CIPHER SUITES ARE A GOOD ALTERNATIVE

Assuming an equivalent key strength is used, here are some basic guidelines of what happens to
performance when ECC ciphers suites are used instead of the traditional RSA suites.

1. If the application typically negotiates to an ephemeral DHE_RSA based suite without client
authentication, both servers and clients will greatly benefit in switching to a ECDHE suite
(either ECDHE_RSA or ECDHE_ECDSA) to take advantage of the much faster key
generation.

2. If the application typically negotiates to a standard RSA suite without client authentication

(RSA key exchange and authentication), servers will likely benefit by switching to an
ECDH_ECDSA suite but the client will suffer decreased performance due to the slower
signature validation.

3. If the application typically engages in client authentication handshakes a server will suffer

greatly decreased performance due to the two signature validations during the CERTIFIATE
and CERTIFICATE_VERIFY message parsing.

 6 © INSIDE Secure - 2013 - All rights reserved

4 API
After enabling ECC cipher suites, the only API difference from the standard library is to use the EC specific
certificate and key loading functions documented here. They are analogous to matrixSslLoadRsaKeys
and matrixSslLoadRsaKeysMem.

4.1 matrixSslLoadEcKeys

int32 matrixSslLoadEcKeys(sslKeys_t *keys, const char *certFile,
const char *privFile, const char *privPass,
const char *trustedCAFiles);

Parameter Input/Output Description
keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewClientSession or matrixSslNewServerSession to
associate key material with a SSL session.

certFile input The fully qualified filename(s) of the PEM formatted X.509 identity certificate for this SSL peer.
For in-memory support, see matrixSslLoadEcKeysMem
This parameter is always relevant to servers. Clients will want to supply an identity certificate and
private key if supporting client authentication. NULL otherwise.

privFile input The fully qualified filename of the PEM formatted private EC key that was used to sign
certFile. Supported formats are PKCS# 8 or “SEC1: Elliptical Curve Cryptography” at
www.secg.org.
This parameter is always relevant to servers. Clients will want to supply an identity certificate and
private key if supporting client authentication. NULL otherwise.

privPass input The plaintext password used to encrypt the private key file. NULL if private key file is not
password protected or unused. MatrixSSL supports the MD5 PKCS#5 2.0 PBKDF1 password
standard.

trustedCAFiles input The fully qualified filename(s) of the trusted root certificates (Certificate Authorities) for this SSL
peer.
This parameter is always relevant to clients. Servers will want to supply a CA if requesting client
authentication. NULL otherwise.

Return Value Test Description
PS_SUCCESS 0 Success. All input files parsed and the keys parameter is available for use in session

creation

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_FAILURE < 0 Failure. Password protected decoding failed. Likey incorrect password provided

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate material

Servers and Clients
This function is called to load the ECC certificates and private key files from disk that are needed for SSL
client-server authentication. The key material is loaded into the keys parameter for input into the
subsequent session creation APIs matrixSslNewClientSession or matrixSslNewServerSession. This
API can be called at most once for a given sslKeys_t parameter.
A standard SSL connection performs one-way authentication (client authenticates server) so the
parameters to this function are specific to the client/server role of the application. The certFile,
privFile, and privPass parameters are server specific and should identify the certificate and private key
file for that server. The certFile and privFile parameters represent the two halves of the public key so
they must both be non-NULL values if either is used.
The trustedCAFiles parameter is client specific and should identify the trusted root certificates that will
be used to validate the certificates received from a server.

 7 © INSIDE Secure - 2013 - All rights reserved

Calling this function is a resource intensive operation because of the file access, parsing, and internal
public key authentications required. For this reason, it is advised that this function be called once per set
of key files for a given application. All new sessions associated with the certificate material can reuse the
existing key pointer. At application shutdown the user must free the key structure using
matrixSslDeleteKeys.

Client Authentication
If client authentication functionality is desired, all parameters to this function become relevant to both
clients and servers. The certFile and privFile parameters are used to specify the identity certificate of
the local peer. Likewise, each entity will need to supply a trustedCAcertFile parameter that lists the
trusted CAs so that the certificates may be authenticated. It is easiest to think of client authentication as a
mirror image of the normal server authentication when considering how certificate and CA files are
deployed.
It is possible to configure a server to engage in a client authentication handshake without loading CA files.
Enable the SERVER_CAN_SEND_EMPTY_CERT_REQUEST define in matrixsslConfig.h to allow the server to
send an empty CertificateRequest message. The server can then use the certificate callback function to
perform a custom authentication on the certificate returned from the client.
The MatrixSSL library must be compiled with USE_CLIENT_AUTH defined in matrixsslConfig.h to enable
client authentication support.

Multiple CA Certificates and Certificate Chaining
It is not uncommon for a server to work from a certificate chain in which a series of certificates form a child-
to-parent hierarchy. It is even more common for a client to load multiple trusted CA certificates if
numerous servers are being supported.
There are two ways to pass multiple certificates to the matrixSslLoadRsaKeys API. The first is to pass a
semi-colon delimited list of files to the certFile or trustedCAcertFiles parameters. The second way is
to append several PEM certificates into a single file and pass that file to either of the two parameters.
Regardless of which way is chosen, the certFile parameter MUST be passed in a child-to-parent order.
The first certificate parsed in the chain MUST be the child-most certificate and each subsequent certificate
must be the parent (issuer) of the former. There must only ever be one private key file passed to this
routine and it must correspond with the child-most certificate.

Encrypted Private Keys
It is strongly recommended that private keys be password protected when stored in files. The privPass
parameter of this API is the plaintext password that will be used if the private key is encrypted. MatrixSSL
supports an MD5 based PKCS#5 2.0 PBKDF1 standard for password encryption. The most common way
a password is retrieved is through user input during the initialization of an application.

Memory Profile
The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

 8 © INSIDE Secure - 2013 - All rights reserved

4.2 matrixSslLoadEcKeysMem

int32 matrixSslLoadEcKeysMem(sslKeys_t *keys, unsigned char *certBuf,
int32 certLen, unsigned char *privBuf, int32 privLen,
unsigned char *trustedCABuf, int32 trustedCALen);

Parameter Input/Output Description
keys input/output Allocated key structure returned from a previous call to matrixSslNewKeys. Will become

input to matrixSslNewClientSession or matrixSslNewServerSession to
associate key material with a SSL session.

certBuf input The X.509 ASN.1 identity certificate for this SSL peer. For file-based support, see
matrixSslLoadEcKeys
This parameter is always relevant to servers. Clients will want to supply an identity certificate
and private key if supporting mutual authentication. NULL otherwise.

certLen input Byte length of certBuf

privBuf input The PKCS#8 or “SEC1: Elliptical Curve Cryptography” private EC key that was used to sign the
certBuf.
This parameter is always relevant to servers. Clients will want to supply an identity certificate
and private key if supporting mutual authentication. NULL otherwise.

privLen input Byte length of privBuf

trustedCABuf input The X.509 ASN.1 stream of the trusted root certificates (Certificate Authorities) for this SSL
peer.
This parameter is always relevant to clients. Servers will want to supply a CA if requesting
mutual authentication. NULL otherwise.

trustedCALen input Byte length of trustedCABuf

Return Value Test Description
PS_SUCCESS 0 Success. All input buffers parsed successfully and the keys parameter is available for use in

session creation

PS_CERT_AUTH_FAIL < 0 Failure. Certificate or chain did not self-authenticate or private key could not authenticate
certificate

PS_PLATFORM_FAIL < 0 Failure. Error locating or opening an input file

PS_ARG_FAIL < 0 Failure. Bad input function parameter

PS_MEM_FAIL < 0 Failure. Internal memory allocation failure

PS_PARSE_FAIL < 0 Failure. Error parsing certificate or private key buffer

PS_UNSUPPORTED_FAIL < 0 Failure. Unsupported key algorithm in certificate material

Servers and Clients
This function is the in-memory equivalent of the matrixSslLoadEcKeys API to support environments
where the certificate material is not stored as files on disk. Please consult the documentation for
matrixSslLoadEcKeys for detailed information on how clients and servers should manage the certificate
and private key parameters. This API can be called at most once for a given sslKeys_t parameter.
There is no password protection support for private key buffers. It is recommended that the user
implement secure storage for the private key material.

Multiple CA Certificates and Certificate Chaining
This in-memory version of the key parser also supports multiple CAs and/or certificate chains. Simply
append the ASN.1 certificate streams together for either the certBuf or trustedCAbuf parameters. If
using a certificate chain in the certBuf parameter the order of the certificates still MUST be in child-to-
parent order with the privBuf being the key associated with the child-most certificate.

Memory Profile
The keys parameter must be freed with matrixSslDeleteKeys after its useful life.

