

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.
Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2013 - All rights reserved

MatrixSSL

Porting Guide

 2 © INSIDE Secure - 2013 - All rights reserved

TABLE OF CONTENTS

1	
 GENERAL CONFIGURATION .. 4	

1.1 Configuring a Development Environment .. 4	

1.2 Compiler Options and Pre-Processor Defines ... 4	

1.2.1 Platform Defines .. 4	

1.2.2 Performance Defines ... 4	

2	
 PLATFORM-SPECIFIC CONFIGURATION ... 6	

2.1 Source Code Framework ... 6	

2.2 Data Types and Structures .. 6	

2.3 Time Functions ... 7	

2.3.1 osdepTimeOpen .. 7	

2.3.2 osdepTimeClose .. 7	

2.3.3 psGetTime ... 8	

2.3.4 psDiffMsecs ... 9	

2.4 Random Number Generation Functions .. 10	

2.4.1 osdepEntropyOpen .. 10	

2.4.2 osdepEntropyClose .. 10	

2.4.3 psGetEntropy ... 11	

2.5 File Access Functions .. 12	

2.5.1 psGetFileBuf .. 12	

2.6 Trace and Debug Functions ... 12	

2.6.1 osdepTraceOpen ... 13	

2.6.2 osdepTraceClose ... 13	

2.6.3 _psTraceStr ... 13	

2.6.4 _psTraceInt .. 13	

2.6.5 _psTracePtr ... 14	

2.6.6 osdepBreak .. 14	

3	
 STANDARD LIBRARY DEPENDENCIES .. 15	

3.1 Memory Allocation .. 15	

3.1.1 malloc ... 15	

3.1.2 realloc .. 15	

3.1.3 free ... 15	

3.2 Memory Operations .. 15	

3.2.1 memcmp .. 15	

3.2.2 memcpy ... 16	

3.2.3 memset .. 16	

3.2.4 memmove .. 16	

3.2.5 strstr ... 16	

3.2.6 strlen .. 16	

3.3 Multithreading and fork() .. 17	

3.3.1 osdepMutexOpen ... 17	

3.3.2 osdepMutexClose .. 18	

3.3.3 psCreateMutex ... 18	

 3 © INSIDE Secure - 2013 - All rights reserved

3.3.4 psLockMutex .. 18	

3.3.5 psUnlockMutex .. 19	

3.3.6 psDestroyMutex ... 19	

4	
 ADDITIONAL TOPICS .. 20	

4.1 Client and Server Socket-Based Applications ... 20	

4.2 64-Bit Integer Support .. 20	

 4 © INSIDE Secure - 2013 - All rights reserved

1 GENERAL CONFIGURATION
This document is the technical reference for porting the MatrixSSL C code library to a software platform
that isn’t supported by default in the product package.
This document is primarily intended for the software developer performing MatrixSSL integration into their
custom application but is also a useful reference for anybody wishing to learn more about MatrixSSL.

1.1 Configuring a Development Environment
When beginning a port of MatrixSSL the first thing to decide is what type of binary is being built. The
typical options on many platforms are to create a static library, a shared library, an executable or a
binary image. It is most common on full-featured operating systems to create a MatrixSSL library and use
that to later link with the custom executable being created. If multiple applications use MatrixSSL
functionality, then a dynamic library is more efficient for disk space; otherwise a static library can actually
be smaller when directly linked with an application. On many embedded and real time operating systems,
a single binary is compiled with MatrixSSL and all other objects (operating system and application code)
into a binary image.
Once the project type is chosen, the next step is to include the MatrixSSL source files. The MatrixSSL
library is created from the C source code files that exist in the core, crypto, and matrixssl directories at the
top of the package directory structure. The best place to look for the list of files is in the core/Makefile,
crypto/Makefile, and matrixssl/Makefile. An application that only uses MatrixSSL cryptography directly can
link with just core and crypto source.

1.2 Compiler Options and Pre-Processor Defines
1.2.1 Platform Defines
The MatrixSSL source is written in ANSI C and the compiler options for your platform should be set to
reflect that if necessary.
The majority of pre-processor defines for MatrixSSL are contained within the configuration headers and
are used to enable and disable functionality within the library. These functionality-based defines are
discussed in the API and Developer’s Guide documentation. By comparison, the defines that are used to
specify the hardware platform and operating system should be set using the -D compiler flag inside the
development environment.
If you choose to follow the platform framework that is implemented in the default package the most
important pre-processor define to set is the <OS> define that will determine which osdep.c file is compiled
into the library. As of version 3.7 the two default <OS> options are POSIX and WIN32. However, if you
are reading this document it is likely that your platform is not supported by either of these defaults. For
more information on the <OS> define and implementing MatrixSSL on an unsupported platform, see the
Implementing core/<OS> section below.

Processor Architecture
You should confirm the PSTM_#BIT define being set in osdep.h does match the bit architecture of the
platform. For example, set PSTM_32BIT for 32-bit processors or PSTM_64BIT for 64-bit processors.

1.2.2 Performance Defines
There are pre-processor defines for common CPU architectures that will optimize some of the
cryptographic algorithms. As of version 3.7, optimized assembly code for x86, ARM and MIPS platforms
are included, providing significantly faster performance for public and private key operations. The pre-
processor defines are: PSTM_X86, PSTM_X86_64, STM_ARM or PSTM_MIPS.
Notes on PSTM_X86 assembly option: Some of the defines below also must be specified in order to
compile the code under GCC. Also, the assembly code is written in AT&T UNIX syntax, not Intel syntax.
This means it will not compile under Microsoft Visual Studio or the Intel Compiler. Currently, to use the

 5 © INSIDE Secure - 2013 - All rights reserved

optimizations on Windows, the files containing assembly code must be compiled with GCC under windows
and then linked with the remaining code as compiled by the non-GCC tools.
Notes on Mac OS X assembly: Due to the registers required and the build options available under OS X,
it is not currently possible to build a dynamic library with assembly optimizations. If a dynamic library for
MatrixSSL is required, it should be built dynamically without the assembly language objects, and just those
objects should be statically linked in to each of the applications using MatrixSSL for minimal code footprint.
Also, note that some of the options below must be defined on OS X.

There are several compiler options that also affect size and speed on various platforms. The options below
are given for the GCC compiler. Other compilers should support similar types of optimizations.

GCC Flag Notes

-Os By default, MatrixSSL uses this optimization, which is a good
balance between performance and speed. Because embedded
devices are often constrained by RAM, FLASH and CPU cache
sizes, often optimizing for size produces faster code than
optimizing for speed with -O3

-g Because MatrixSSL is provided as source code, it can be
compiled with debug flags (-g) rather than optimization flags.

-fomit-frame-pointer This option allows one additional register to be used by
application code, allowing the compiler to generate faster code.
It is required on X86 platforms when using MatrixSSL assembly
optimizations because the assembly code is written to take
advantage of this register.

-mdynamic-no-pic This option can also allow an additional register to be useable
by application code. On the Mac OS X platform, it is required to
compile with assembly language optimizations.

-ffunction-sections This option effectively allows the linker to treat each function as
its own object when statically linking. This means that only
functions that are actually called are linked in. MatrixSSL is
already divided into objects optimally, but this option may help
overall when producing a binary of many different objects.

 6 © INSIDE Secure - 2013 - All rights reserved

2 PLATFORM-SPECIFIC CONFIGURATION
The primary effort of a MatrixSSL port is to implement a small set of specific functionality required by the
inner workings of the library. This section defines all the platform-specific requirements the developer
must implement.

2.1 Source Code Framework
Inside Secure has attempted to make the porting process as straightforward as possible. There is any
number of ways the developer can organize the source files to include these specific requirements but it is
strongly encouraged that the default framework be used for purposes of support and modularization.
The default design framework will only require the user to work with two source code files:

File Description

core/osdep.h Existing header file the developer should include the platform specific headers,
typedefs, and PSTM_ defines to identify the platform.

core/<OS>/osdep.c New C source code file the developer will use to implement the specific platform
functions.

The <OS> designation will be defined by the developer and should be a brief capitalized description of the
operating system being ported to. This value should then be set as a preprocessor define so that the
correct data types are pulled from core/osdep.h and that the core/<OS>/osdep.c file is compiled into the
library. As of version 3.4 the currently supported defines are POSIX and WIN32 and can be used as
references during the porting process.

2.2 Data Types and Structures
The following table describes the set of data types the user must define for the new platform. These
should be added to the existing core/osdep.h file and wrapped in #ifdef <OS> blocks.

Data Type Definition Comments

int32 A 32-bit integer type Always required

uint32 A 32-bit unsigned integer type Always required

int16 A 16-bit integer type Always required

uint16 A 16-bit unsigned integer type Always required

int64 A 64-bit integer type Only required if
HAVE_NATIVE_INT64 is defined

uint64 A 64-bit unsigned integer type Only required if
HAVE_NATIVE_INT64 is defined

psTime_t A data type to store a time counter
for the platform

Always required. See the Time
Functions section below for
details. Allows for a higher
resolution and length than a
single 32 bit value, if desired.

 7 © INSIDE Secure - 2013 - All rights reserved

Data Type Definition Comments

psMutex_t A data type to support a lockable
mutex.

Only required if
USE_MULTITHREADING is
defined. See the Multithreading
section below for details.

2.3 Time Functions
These functions should be implemented in core/<OS>/osdep.c
The implementation allows for an arbitrary internal time structure to be used (for example a 64 bit counter),
while providing the ability to get a delta between times and a time-based monotonically increasing value,
both as 32 bit signed integers.

2.3.1 osdepTimeOpen

int osdepTimeOpen(void);

Return Value Description
PS_SUCCESS Successful initialization

PS_FAILURE Failure.

Servers and Clients
This is the one-time initialization function for the platform specific time support. For example, it may
initialize a high-resolution timer, calibrate the system time, etc. This function must always exist even if
there is no operation to perform. This function is internally invoked from matrixSslOpen.

Memory Profile
This function may internally allocate memory that can be freed during osdepTimeClose

2.3.2 osdepTimeClose

void osdepTimeClose(void);

Servers and Clients
This function performs the one-time final clean-up for the platform specific time support. This function must
always exist even if there is no operation to perform. This function is internally invoked from
matrixSslClose.

Memory Profile
This function should free any memory that was allocated during osdepTimeOpen

 8 © INSIDE Secure - 2013 - All rights reserved

2.3.3 psGetTime

int32 psGetTime(psTime_t *currentTime, void *userPtr);

Parameter Input/Output Description
currentTime output Platform-specific time format representing the current time (or ticks)

userPtr input An opaque pointer that may be used to pass context information to the routine. When called from
MatrixSSL the userPtr will be the ssl->userPtr member of the ssl_t session context
structure.

Return Value Description
> 0 A platform-specific time measurement (each subsequent call to psGetTime must return an ever-increasing

value.)

<= 0 Error retrieving time

Implementation Requirements
This routine must be able to perform two tasks:

1. This function MUST return a platform-specific time measurement in the return parameter. This
value SHOULD be the GMT UNIX Time, which is the number of elapsed seconds since
January 1st, 1970 GMT. If it is not possible to return the GMT UNIX Time the function MAY
return a platform-specific counter value such as CPU ticks or seconds since platform boot.
Ideally, if using CPU time, the current count will be stored in non-volatile memory each power
down, so that it may be loaded again at startup, and the value returned by this function will
continue to increase between any number of power cycles. The SSL and TLS protocols use
this 32 bit signed value as part of the prevention of replay message attacks.

2. This function must populate a platform specific static time structure if it is provided in the

currentTime parameter. The contents of the psTime_t structure must contain the information
necessary to compute the difference in milliseconds between two psTime_t values. If the
platform cannot provide a millisecond resolution time, it is fine to scale up from the most
accurate source available. For example, if the clock can only return values in 1 second
granularity, that value can simply be multiplied by 1000 and returned, when requested. The
currently supported psTime_t structures for POSIX and WIN32 are defined in ./core/osdep.h
and it is recommended additional <OS> versions are included there as well.

Servers and Clients Usage
Clients and Servers both use this function as described in Implementation Requirement 1 above. This
routine is called when the CLIENT_HELLO and SERVER_HELLO handshake messages are being
created. The SSL/TLS specifications require that the first 4 bytes of the Random value for these
messages be the GMT UNIX Time, which is the number of elapsed seconds since January 1st, 1970 GMT.
Many embedded platforms do not maintain the true calendar date and time so it is acceptable for these
platforms to simply return a counter value such as ‘ticks’ since power on, or ‘CPU lifetime ticks’. Also it is
acceptable that UNIX Time will overflow 32 bits in 2038. Ideally, this value is designed to provide a “forever
increasing” value for each SSL message across multiple SSL sessions and CPU power cycles.

Server Usage
Servers also use this function as described in Implementation Requirement 2 above. Servers must
manage an internal session table in which entries can expire or be compared for staleness against other
entries. The psGetTime function is used to store the current time for these table entries for later
comparison using psDiffMsecs and psCompareTime.

 9 © INSIDE Secure - 2013 - All rights reserved

The userPtr
When this function is called from within the MatrixSSL library, the userPtr input parameter will be set to
the ssl->userPtr from the ssl_t session structure. It is possible the psGetTime implementation does not
require any context and the parameter may be safely ignored.

Memory Profile
This implementation requires that the psTime_t structure only contain static members. Implementations of
psGetTime must not allocate memory that is not freed before the function returns.

2.3.4 psDiffMsecs

int32 psDiffMsecs(psTime_t then, psTime_t now, void *userPtr);

Parameter Input/Output Description
then input Time structure from a previous call to psGetTime

now input Time structure from a previous call to psGetTime

userPtr input An opaque pointer that may be used to pass context information to the routine. When called from
MatrixSSL the userPtr will be the ssl->userPtr member of the ssl_t session context
structure.

Return Value Description
> 0 Success. The difference in milliseconds between then and now

<= 0 Error computing the difference in time

Implementation Requirements
This routine must be able to return the difference, in milliseconds, between two given time structures as a
signed 32-bit integer. The value will overflow if then differs from now by more than 24 days.

Server Usage
Servers are the only users of this function. Servers manage an internal session cache table for protocol
optimization in which entries can expire or be compared for staleness against other entries. The
psGetTime function is used to store the current time for these table entries for later comparison using
psDiffMsecs and psCompareTime.

The userPtr
When this function is called from within the MatrixSSL library, the userPtr input parameter will be set to
the ssl->userPtr from the ssl_t session structure. It is possible the psGetTime implementation does not
require any context and the parameter may be safely ignored.

Memory Profile
This implementation requires that the psTime_t structure can only contain only static members.
Implementations of psGetTime must not allocate memory that isn’t freed before the function returns.

 10 © INSIDE Secure - 2013 - All rights reserved

2.4 Random Number Generation Functions
A source of pseudo-random bytes is an important component in the SSL security protocol. These
functions must be implemented in core/<OS>/osdep.c
The generation of truly random bytes of data is critical to the security of SSL, TLS and any of the
underlying algorithms. There are two components to providing truly random data for cryptography.

1. Collecting Entropy (random data from external events):

• User interaction such as the low bit of the time between key presses and clicks, mouse movement
direction, etc.

• Operating system state, such as network packet timing, USB timing, memory layout, etc.
• Hardware state, such as the variation of pixels on a webcam, the static on a radio tuner card, etc.

2. Pseudo Random Number Generation (PRNG) is a step that combines (scrambles) the entropy

input into bytes of data suitable for use in crypto applications. For example, the Yarrow PRNG is
an algorithm that takes random data as input and processes it using a symmetric cipher (AES) and
a one-way hash (SHA-256). An application developer can request these processed bytes using a
second API.

Desktop and Server operating systems typically implement both the collection of entropy and PRNG, and
provide a method for reading random bytes from the OS. For example, LINUX and BSD based operating
system provide /dev/random and/or /dev/urandom, and Windows has CryptGenRandom and related APIs.
On embedded platforms, MatrixSSL can provide a PRNG algorithm (Yarrow) suitable for a small footprint
application, however the first requirement of collecting entropy is more difficult and very platform specific.
Looking at the points above, embedded hardware often has very limited user interaction, very limited time
variation on operating system events (close to zero on an RTOS) and very limited hardware peripherals
from which to draw. Entropy can be gathered from some timing measurements, and high quality entropy
can be gathered if the processor can sample from ADC or a free-running oscillator on the hardware
platform. Please contact Inside Secure for guidance on gathering entropy for a specific hardware platform.

2.4.1 osdepEntropyOpen

int osdepEntropyOpen(void);

Return Value Description
PS_SUCCESS Successful initialization

PS_FAILURE Failure.

Servers and Clients
This is the one-time initialization function for the platform specific PRNG support. This function must
always exist even if there is no operation to perform. This function is internally invoked from
matrixSslOpen.

Memory Profile
This function may internally allocate memory that can be freed during osdepEntropyClose

2.4.2 osdepEntropyClose

void osdepEntropyClose(void);

 11 © INSIDE Secure - 2013 - All rights reserved

Servers and Clients
This function performs the one-time final clean-up for the platform specific entropy and PRNG support.
This function is internally invoked from matrixSslClose.

Memory Profile
This function should free any memory that was allocated during osdepEntropyOpen

2.4.3 psGetEntropy

int32 psGetEntropy(unsigned char *bytes, uint32 size, void *userPtr);

Parameter Input/Output Description
bytes input/output Random bytes must be copied to this buffer

size input The number of random bytes the caller is requesting

userPtr input An opaque pointer that may be used to pass context information to the routine. When called from
MatrixSSL the userPtr will be the ssl->userPtr member of the ssl_t session context
structure. There is one exception to this and is discussed below.

Return Value Description
> 0 Success. The number of random bytes copied to bytes. Should be the same value as size

PS_FAILURE Failure. Error generating random bytes

Implementation Requirements
This routine must be able to provide an indefinite quantity of random data. This function is internally
invoked in several areas of the MatrixSSL code base. Please contact Inside Secure for guidance in
implementing entropy gathering.

Servers and Clients
There are various places in which random data is needed within the SSL protocol for both clients and
servers.

The Relationship Between PRNG and Entropy in MatrixSSL
MatrixSSL does not call psGetEntropy directly. Random data is gathered through the crypto psGetPrng
function, which optionally wraps a PRNG algorithm around the entropy gathering. A PRNG uses hash and
encryption algorithms to output a stream of random bytes rather than going directly to the entropy source
for each required random byte. Occasionally, the PRNG will gather additional entropy using
psGetEntropy to scramble the algorithm. In the case of no PRNG wrapper, the psGetEntropy function
will be called each time psGetPrng is called.
A single global PRNG instance is created during the call to matrixSslOpen with the function psInitPrng.
To support this single instance in the case of USE_MULTITHREADING a lockable mutex is used to wrap all
calls to psGetPrng.

The userPtr and MatrixSSL
In all but one case, when psGetEntropy is invoked from within MatrixSSL the ssl->userPtr member will
be passed as the userPtr to this routine. This is the one exception to this rule.

• Servers and Clients - If a PRNG algorithm is enabled within the psInitPrng mechanism the
algorithm will require an entropy seed value that is fetched using psGetEntropy. However, when
psInitPrng is invoked during matrixSslOpen there is no SSL session context so the userPtr
value will be NULL in this case.

 12 © INSIDE Secure - 2013 - All rights reserved

NOTE: For clients, if the userPtr context is important for psGetEntropy the sslSessOpts_t member
userPtr must be populated when passing options to matrixSslNewClientSession because the creation
of CLIENT_HELLO will require entropy gathering.

Memory Profile
This API may adjust its internal state or storage size of collected entropy data.

2.5 File Access Functions
These functions can optionally be implemented in core/<OS>/osdep.c. They are only required if
MATRIX_USE_FILE_SYSTEM is defined in the platform build environment.

2.5.1 psGetFileBuf

int32 psGetFileBuf(psPool_t *pool, const char *filename,
 unsigned char **buf, int32 *bufLen);

Parameter Input/Output Description
pool input The memory pool if using Matrix Deterministic Memory (USE_MATRIX_MEMORY_MANGEMENT is

enabled)

filename input The filename (with directory path) of the file to open

buf output The contents of the filename in an internally allocated memory buffer

bufLen output Length, in bytes, of buf

Return Value Description
PS_SUCCESS Success. The file contents are in the memory buffer at buf

< 0 Failure.

Implementation Requirements
This routine must be able to open a given file and copy the contents into a memory location that is returned
to the caller. The memory location must be allocated from within the function and if a pool parameter is
passed in, the function must use psMalloc for the memory allocation.

Server and Client Usage
Reading files from disk will only be necessary if matrixSslLoadRsaKeys, matrixSslLoadEcKeys, or
matrixSslLoadDhParams is used during initialization.

Memory Profile
Internal library usage of psGetFileBuf will free the allocated buf using psFree after the useful life. If
using psGetFileBuf in a custom application psFree will need to be called manually.

2.6 Trace and Debug Functions
The _psTrace set of APIs are the low level platform-specific trace routines that are used by psTraceCore
(USE_CORE_TRACE), psTraceCrypto (USE_CRYPTO_TRACE), psTraceInfo
(USE_SSL_INFORMATIONAL_TRACE), and psTraceHs (USE_SSL_HANDSHAKE_MSG_TRACE). These functions
should be implemented in core/<OS>/osdep.c, and can be stubbed out if trace is not required.

 13 © INSIDE Secure - 2013 - All rights reserved

2.6.1 osdepTraceOpen

int osdepTraceOpen(void);

Return Value Description
PS_SUCCESS Successful initialization

PS_FAILURE Failed trace module initialization

Servers and Clients
This is the one-time initialization function for the platform specific trace support. This function must always
exist even if there is no operation to perform. This function is internally invoked by matrixSslOpen.

Memory Profile
This function may internally allocate memory that can be freed during osdepTraceClose

2.6.2 osdepTraceClose

void osdepTraceClose(void);

Servers and Clients
This function performs the one-time final cleanup for the platform specific trace support. This function must
always exist even if there is no operation to perform. This function is internally invoked by matrixSslClose.

Memory Profile
This function must free any memory that was allocated during osdepTraceOpen

2.6.3 _psTraceStr

void _psTraceStr(char *message, char *value);

Parameter Input/Output Description

message input A string message containing a single %s format character that will be output as debug trace

value input A string variable value that will be substituted for the %s in the message parameter

Implementation Requirements
This routine should substitute the value string for %s in the message parameter and output the result to the
standard debug output location.

2.6.4 _psTraceInt

void _psTraceInt(char *message, char *value);

 14 © INSIDE Secure - 2013 - All rights reserved

Parameter Input/Output Description
message input A string message containing a single %d format character that will be output as debug trace

value input A integer variable value that will be substituted for the %d in the message parameter

Implementation Requirements
This routine should substitute the value integer for %d in the message parameter and output the result to
the standard debug output location.

2.6.5 _psTracePtr

void _psTraceInt(char *message, char *value);

Parameter Input/Output Description
message input A string message containing a single %p format character that will be output as debug trace

value input A memory pointer variable value that will be substituted for the %p in the message parameter

Implementation Requirements
This routine should substitute the value integer for %p in the message parameter and output the result to
the standard debug output location.

2.6.6 osdepBreak

void osdepBreak(void);

Implementation Requirements
This routine should be a platform-specific call to halt program execution in a debug environment. This
function is invoked as part of the _psError set of APIs if HALT_ON_PS_ERROR is enabled to aid in source
code debugging. There is a small set of _psError calls inside the library but the intention is that the user
adds them to the source code to help narrow down run-time problems.

 15 © INSIDE Secure - 2013 - All rights reserved

3 STANDARD LIBRARY DEPENDENCIES
MatrixSSL also relies on a small set of standard library calls that the platform must provide. The functions
in this list should typically be provided in the standard C libraries, such as libc, newlib and uClibc, but if not,
you will need to implement them.
The Implementation Requirements descriptions for these routines are taken directly from the BSD
Library Functions Manual.

3.1 Memory Allocation
3.1.1 malloc

void *malloc(size_t size);

Implementation Requirements
The malloc function allocates size bytes of memory and returns a pointer to the allocated memory.

3.1.2 realloc

void *realloc(void *ptr, size_t size);

Implementation Requirements
The realloc function tries to change the size of the allocation pointed to by ptr to size, and returns ptr.
If there is not enough room to enlarge the memory allocation pointed to by ptr, realloc creates a new
allocation, copies as much of the old data pointed to by ptr as will fit to the new allocation, frees the old
allocation, and returns a pointer to the allocated memory. If ptr is NULL, realloc is identical to a call to
malloc for size bytes. If size is zero and ptr is not NULL, a new, minimum sized object is allocated and
the original object is freed.

3.1.3 free

void free(void *ptr);

Implementation Requirements
The free function deallocates the memory allocation pointed to by ptr.

3.2 Memory Operations

3.2.1 memcmp

int memcmp(const void *s1, const void *s2, size_t n);

Implementation Requirements

 16 © INSIDE Secure - 2013 - All rights reserved

The memcmp function compares byte string s1 against byte string s2. Both strings are assumed to be n
bytes long. The memcmp function returns 0 if the two strings are identical, otherwise returns the difference
between the first two differing bytes (treated as unsigned char values, so that `\200' is greater than `\0', for
example). Zero-length strings are always identical.

3.2.2 memcpy

void *memcpy(void *s1, void *s2, size_t n);

Implementation Requirements
The memcpy function copies n bytes from memory area s2 to memory area s1. If s1 and s2 overlap,
behavior is undefined. Applications in which s1 and s2 might overlap should use memmove instead. The
memcpy function returns the original value of s1.

3.2.3 memset

void *memset(void *s, int c, size_t n);

Implementation Requirements
The memset function writes n bytes of value c (converted to an unsigned char) to the string s. The memset
function returns its first argument.

3.2.4 memmove

void *memmove(void *s1, void *s2, size_t n);

Implementation Requirements
The memmove function copies n bytes from string s2 to string s1. The two strings may overlap; the copy is
always done in a non-destructive manner. The memmove function returns the original value of s1.

3.2.5 strstr

char *strstr(const char *s1, const char *s2);

Implementation Requirements
The strstr function locates the first occurrence of the null-terminated string s2 in the null-terminated
string s1. If s2 is an empty string, s1 is returned; if s2 occurs nowhere in s1, NULL is returned; otherwise a
pointer to the first character of the first occurrence of s2 is returned.

3.2.6 strlen

size_t strlen(const char *s);

Implementation Requirements
The strlen function computes the length of the string s. The strlen function returns the number of
characters that precede the terminating NULL character.

 17 © INSIDE Secure - 2013 - All rights reserved

3.3 Multithreading and fork()
In most cases, a single threaded, non-blocking event loop is more efficient for handling multiple socket
connections. This is evidenced by the architecture of high performance web servers such as nginx and
lightHttpd. As such, MatrixSSL does not contain any locking for individual SSL connections.
If threading is present in an application using MatrixSSL, a few guidelines should be followed:

• It is highly recommended that any given SSL session be associated only with a single thread. This
means multiple threads should never share access to a single ssl_t structure, or its associated
socket connection. Theoretically, the connection may be handled by a thread and then passed on
to another without simultaneous access, but this complexity isn’t recommended. It is also possible
to add a mutex lock around each access of the ssl_t structure, associated socket, etc., however
ensuring that parsing and writing of records is properly interleaved between threads is difficult.

• The only SSL protocol resource shared between sessions in MatrixSSL is the session cache on
server side SSL connections. This is a performance optimization that allows clients that reconnect
to bypass CPU intensive public key operations for a period of time. MatrixSSL does internally
define and lock a mutex to keep this cache consistent if multiple threads access it at the same
time. This code is enabled with the USE_MULTITHREADING define.

• User implementations of entropy gathering, filesystem and time access may internally require
mutex locks for consistency, which is beyond the scope of this document.

Applications using fork() to handle new connections are common on Unix based platforms. Because the
MatrixSSL session cache is located in the process data space, a forked process will not be able to update
the master session cache, thereby preventing future sessions from being able to take advantage of this
speed improvement. In order to support session resumption in forked servers, a shared memory or file
based session cache must be implemented.
The mutex implementation is wrapped within the USE_MULTITHREADING define in core/coreConfig.h and the
platform-specific implementation should be included in the core/<OS>/osdep.c file.

3.3.1 osdepMutexOpen

int osdepMutexOpen(void);

Return Value Description
PS_SUCCESS Successful initialization

PS_FAILURE Failed mutex module initialization

Servers
This is the one-time initialization function for the platform specific mutex support. This function must
always exist even if there is no operation to perform. This function is internally invoked by matrixSslOpen.

Memory Profile
This function may internally allocate memory that can be freed during osdepMutexClose

 18 © INSIDE Secure - 2013 - All rights reserved

3.3.2 osdepMutexClose

int osdepMutexClose(void);

Servers
This function performs the one-time final cleanup for the platform specific mutex support. This function
must always exist even if there is no operation to perform. This function is internally invoked by
matrixSslClose.

Return Value Description

PS_SUCCESS Success

PS_FAILURE Failure

3.3.3 psCreateMutex

int32 psCreateMutex(psMutex_t *mutex);

Parameter Input/Output Description
mutex input/output An allocated psMutex_t structure to initialize for future calls to psLockMutex,

psUnlockMutex, and psDestroyMutex

Return Value Description
PS_SUCCESS Success. The mutex has been created

PS_FAILURE Failure

Server Usage
The server uses this function to create the sessionTableLock during application initialization.

3.3.4 psLockMutex

int32 psLockMutex(psMutex_t *mutex);

Parameter Input/Output Description
mutex input Mutex to lock

Return Value Description
PS_SUCCESS Success. The mutex has been locked

PS_FAILURE Failure

Server Usage
The server uses this function to lock the sessionTableLock each time the session cache table is being
modified.

 19 © INSIDE Secure - 2013 - All rights reserved

3.3.5 psUnlockMutex

int32 psUnlockMutex(psMutex_t *mutex);

Parameter Input/Output Description
mutex input Mutex to unlock

Return Value Description
PS_SUCCESS Success. The mutex has been locked

PS_FAILURE Failure

Server Usage
The server uses this function to unlock the sessionTableLock each time the session cache table is done
being modified.

3.3.6 psDestroyMutex

void psDestroyMutex(psMutex_t *mutex);

Parameter Input/Output Description
mutex input Mutex to destroy

Server Usage
The server uses this function to destroy the sessionTableLock mutex during application shutdown.

 20 © INSIDE Secure - 2013 - All rights reserved

4 ADDITIONAL TOPICS

4.1 Client and Server Socket-Based Applications
If directly porting the BSD sockets-based client and server applications that are provided in the apps
directory, there is an additional set of functions that must be available on the platform. Below is an
alphabetical list of the functions with an ✓ indicating that is it needed by that application. If porting to non-
BSD sockets applications, it is easier to rewrite the examples with the native transport API than to try to
implement the apis 1:1 below.

Function Client Server

accept 	
 ✓

bind 	
 ✓

close ✓ ✓

connect ✓ 	

exit 	
 ✓

fcntl ✓ ✓

inet_addr ✓ 	

listen 	
 ✓

puts 	
 ✓

recv ✓ ✓

select 	
 ✓

send ✓ ✓

setsockopt 	
 ✓

signal 	
 ✓

socket ✓ ✓

strncpy ✓ ✓

4.2 64-Bit Integer Support
If your platform supports 64-bit integer types (long long) you should make sure HAVE_NATIVE_INT64 is
enabled in core/osdep.h so that native 64-bit math operations can be used. If used, your platform may
also require the udivdi3 function. If this symbol (or other 64-bit related functions) is not available, you can
optionally disable HAVE_NATIVE_INT64 to produce a slower performance library.
64-bit integer math support is not the same as running in ’64 bit addressing mode’ for the operating
system. Many 32 bit processors do support multiplying two 32-bit numbers for a 64-bit result, and can
enable this define.

