Guile-WWW Modules Reference

edition 2.36, released 22 November 2012

Thien-Thi Nguyen

This reference manual is for Guile-WWW 2.36.

Copyright (© 2007-2012 Thien-Thi Nguyen

Copyright (©) 2001-2007 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license
is included in the appendix entitled “GNU Free Documentation License”.

Table of Contents

1 (wwwhttp)......... 1
1.1 Dynamic Configuration..............cooiiiiiiiiiii .. 1
1.2 High-Level HTTP Operationooiiiiiiiiiiiii... 1
1.3 Low-Level HTTP Message Object Access..........coovvei.... 4
1.4 Common MeSSagesvuutint e 5

2 (wwwaurl) . ..o 7
2.1 High-Level URL Object Conversion................coovviui.... 7
2.2 Low-Level URL Object Construction 7
2.3 Low-Level URL Object Access.......oovuiiiiiiiiiiiiiiiii... 7
2.4 Character Decoding/Encoding............ ...t 8

3 (WWW CEL) . oo 9
3.1 Initialization and Discoveryo it 9
3.2 DataTransfer In......... i 9
3.3 Uncollated Form Datat 11

4 (Wwwmain).............oiiiiiii 12

5 (www url-coding).............. 13

6 (WWW UtCSec)oooviiiiiiiiiiiiiaa., 14

7 (www server-utils big-dishing-loop).......... 15

8 (www server-utils parse-request)............. 18

9 (www server-utils form-2-form) 20

10 (www server-utils filesystem) 21

11 (www server-utils cgi-prep) 26

12 (www server-utils cookies) 28

13 (www server-utils answer)................... 31

14 (www server-utils log) 36

15 (www server-utils modlisp).................. 37
16 (www data http-status)...................... 38
17 (www data mime-types)..................... 39

Appendix A GNU Free Documentation License
42

ii

Chapter 1: (www http) 1

1 (www http)

The (www http) module includes module-configuration fluids, procedures for high-level
HTTP operation, low-level HT'TP message object access, and common messages.

1.1 Dynamic Configuration

protocol-version [Fluid]
A pair of integers representing the major and minor portions of the protocol version
this module should support. The default value is (1 . 0). Users:

http:request

http:head ; via http:request
http:get ; likewise
http:post-form ; likewise

1.2 High-Level HTTP Operation

http:connect proto addrfam address [address-rest. . .] [Procedure]
Return a TCP stream socket connected to the location specified by protocol proto,
addrfam and address. proto is PF_INET or PF_UNIX, and the other args take corre-
sponding forms:

PF_INET (AF_INET ipaddr portno), where ipaddr is an integer. Use (car
(hostent:addr-1list (gethost host))) to compute the ipaddr of host
(a string).

PF_UNIX (AF_UNIX filename), made, for example, by
(1ist AF_UNIX "/tmp/foo-control").

Note that PF_foo and AF_foo are names of variables that have constant values, not
symbols.

http:open host [port] [Procedure]
Return an HTTP connection (a socket) to host (a string) on TCP port port (default
80 if unspecified).

send-request sock method url [keyword value. . .| [Procedure]
Keywords: headers, body, flags, protocol-version

Submit to socket sock an HTTP request using method (a symbol) and url, an object
returned by url:parse, forming the message with additional headers, a list of strings,
each of which should have one of the forms:

NAME ": " VALUE
NAME ": " VALUE CRLF

and body, which may be #f (which means no body), a string or list of them, a u8
vector or list of them, or a procedure m which manages the transmission of the body
data by supporting the body transmission protocol. This means m takes one arg,
command (symbol):

Chapter 1: (www http) 2

content-length
This is called if the transfer is not “chunked” (see below). m returns the
total length (in bytes) of the data.

next-chunk
Return two values: the length (in bytes) of the next chunk of data to
send, and either a string, or a procedure w that does the actual writing
to its port arg (which will be sock). If there is no more data, both values
should be #f£, i.e., m should return (values #f #f).

If flags contains the symbol chunked, send the body with “chunked” Transfer-
Encoding. Otherwise, compute and add to the headers its total Content-Length.

If flags contains the symbol close, add Connection: close to the headers.

The protocol-version is a pair specifying the major and minor version numbers of
HTTP to send as. It defaults to (1 . 1). For HTTP 1.x (x >= 1), automatically add
chunked to flags as well as the headers:

TE: trailers
Connection: TE

Return an unspecified object pending that can be passed to receive-response.

receive-response pending [keyword value...| [Procedure]
Keywords: s2s, intervene, flags

Receive the pending (from send-request) response. Return an HTTP message ob-
ject. The header names are symbols made by (string->symbol (s2s orig)), where
s2s defaults to string-titlecase. The status code is a 3-digit integer. The body of
the message may be #£ if there is no body possible (per HTTP). Otherwise, its value
depends on intervene and flags.

e If intervene is specified, it should be a procedure that takes two args, hget and
flags and returns two values, new-headers and new-flags. It is called after the
headers are parsed but before the body is received so that its returned values
may influence the body processing.

hget is a procedure that takes one arg sel.

#f Return the headers (alist).

#t Return the name normalization procedure (involving s2s, described
above).

string Normalize it; return the associated header value.

symbol Return the associated header value.

A #f value for new-headers means “don’t change the headers”. Likewise, for
new-flags. Otherwise, the respective items are replaced (NB: not just added!).

e If flags is null (the default), the body is a string.
e If flags contains the symbol u8, the body is a u8 vector.

e If flags contains the symbol custom, the following item in flags should be a thunk
that returns four values (all procedures) that support the chunk transfer protocol.
These are:

Chapter 1: (www http) 3

(mkx len) Create and return a container capable of holding len bytes.

(r! x sock)
Fill x, reading from sock. Return the number of bytes read (positive
integer), or zero on EOF.

(cat-r 1list)
Return a new container formed by reversing list and concatenating
its elements.

(subseq x len)
Return a new container that holds the first len bytes of container x.

The message body is a single container, either constructed from multiple exact
chunks (“chunked” Transfer-Encoding), or read in one swoop (if Content-
Length is given), or from multiple inexact chunks (the default).

For backward compatability, instead of a thunk returning four values, you can
also specify the four values directly. NB: Support for specifying four values
directly will NO LONGER BE AVAILABLE after 2013-05-15.!

e If flags contains the symbol no-cat, then all multi-chunk transfers are not “con-
catenated”; instead, the message body is the list of chunk data (string, u8 or
custom), in order of reception.

Here is an example that uses receive-response argument intervene to arrange for the
message body to be a u8 vector if the Content-Type is not “text/*”.

(use-modules
(srfi srfi-13) ; string-prefix?
(www url)) ; url:parse

(define (text? type)
(string-prefix? "text/" type))

(define (u8-maybe hget flags)
(cond ((hget ’Content-Type)
=> (lambda (type)
(values #f (and (not (text? type))
(cons ’u8 flags)))))
(else
(values #f #f))))

(define SOCK (http:open ...))

(define (gimme string)

1 Out of an explicit call-with-values context, Guile 2.x will silently discard all values following the
“expected number” (one, in this case):

(list ’custom (values P1 P2 P3 P4))
= (custom P1)

This is apparently allowed under R5RS and R6RS.

Chapter 1: (www http) 4

(send-request SOCK ’GET (url:parse string)))

(define (ok pending)
(receive-response pending #:intervene u8-maybe))

(define ICO (ok (gimme "http://localhost/favicon.ico")))
(define IDX (ok (gimme "http://localhost/index.html")))

(http:message-body ICO)
= #u8(0 0 1 0 1 0 46 ...)

(http:message-body IDX)

= "<?7xml version=\"1.0\" ..."
Note that to find the content type in u8-maybe, we rely on the default header-name nor-
malization of string-titlecase, since we know ok does not specify #:s2s s2s in its call
to receive-response. To enable u8-maybe to work with any pending response, you can
instead use (hget "Content-Type") (i.e., a string name).

http:request method url [headers [body]] [Procedure]
Submit an HTTP request using method and url, wait for a response, and return the
response as an HT'TP message object. The field types and values of this message
object are as described in receive-response, with two exceptions (for backward
compatability): the status code is a string; the header names are symbols, all lower-
case.

method is the symbolic name of some HTTP method, e.g., GET or POST. It may also
be a string. url is a url object returned by url:parse. Optional args headers and
body are lists of strings that comprise the lines of an HTTP message. The header
strings should not end with ‘CR’ or ‘LF’ or ‘CRLF’; http:request handles that. Also,
the Content-Length header and Host header are calculated automatically and should
not be supplied. Here are two examples:

(http:request ’GET parsed-url
(list "User-Agent: Anonymous/0.1"
"Content-Type: text/plain"))

(http:request ’POST parsed-url
(1ist "User-Agent: Fred/0.1"
"Content-Type: application/x-www-form-urlencoded")
(1ist "search=Gosper"
"&case=no"
"gmax_hits=50"))
In the second example, the Content-Length header is computed to have value 33
(the sum of 13, 8 and 12).

1.3 Low-Level HTTP Message Object Access

http:message-version msg [Procedure]
Return the HTTP version in use in HT'TP message msg.

Chapter 1: (www http) 5

http:message-status-code msg [Procedure]
Return the status code returned in HT'TP message msg.

http:message-status-text msg [Procedure]
Return the text of the status line from HTTP message msg.

http:message-status-ok? msg [Procedure]
Return #t iff status code of msg indicates a successful request.

http:status-ok? status [Procedure]
Return #t iff status (string or integer) is 2xx.

http:message-body msg [Procedure]
Return the body of the HTTP message msg.

An HTTP message header is represented by a pair. The CAR is a symbol representing
the header name, and the CDR is a string containing the header text. E.g.:

>((date . "Thu, 29 May 1997 23:48:27 GMT")
(server . "NCSA/1.5.1")
(last-modified . "Tue, 06 May 1997 18:32:03 GMT")
(content-type . "text/html")
(content-length . "8097"))

Note: these symbols are all lowercase, although the original headers may be mixed-case.
Clients using this library should keep this in mind, since Guile symbols are case-sensitive.

http:message-headers msg [Procedure]
Return a list of the headers from HTTP message msg.

http:message-header header msg [Procedure]
Return the header field named header from HTTP message msg, or #f if no such
header is present in the message.

1.4 Common Messages

http:post-form url extra-headers fields [Procedure]
Submit an http request using the POST method on the url. extra-headers is a list of
extra headers, each a string of form "name: value ...".

The "Content-Type" and "Host" headers are sent automatically and do not need to
be specified. fields is a list of elements of the form (fkey . fvalue), where fkey is a
symbol and fvalue is normally a string.

fvalue can also be a list of file-upload specifications, each of which has the form
(source name mime-type transfer-encoding). source can be a string or a thunk
that returns a string.

The rest of the elements are strings or symbols: name is the filename (only the non-
directory part is used); mime-type is a type/subtype pair such as "image/jpeg", or
#f to mean "text/plain". transfer-encoding is one of the tokens specified by RFC
1521, or #£f to mean "binary". File-upload spec elements with invalid types result in
a "bad upload spec" error prior to the http request.

Chapter 1: (www http) 6

Note that source is used directly without further processing; it is the caller’s respon-
sibility to ensure that the MIME type and transfer encoding specified describe source
accurately.

If there are no file-upload specifications in fields, the Content-Type is
application/x-www-form-urlencoded, and furthermore all the fkey and fvalue are
transformed by url-coding:encode (see Chapter 5 [url-coding], page 13) with the
additional reserved characters #\& (ampersand) and #\= (equal sign).

Otherwise, the Content-Type is multipart/form-data, with each field in fields for-
matted as a MIME sub-part.

NB: The following two procedures will NO LONGER BE AVAILABLE after 2013-02-28.
Using send-request and receive-reply directly is more flexible and featureful.

http:head url [Procedure]
Submit an http request using the HEAD method on the url. The Host header is
automatically included.

http:get url [Procedure]
Submit an http request using the GET method on the url. The Host header is auto-
matically included.

Chapter 2: (www url) 7

2

The

(www url)

(www url) module provides procedures for high-level url object conversion, low-level

url object construction and access, and character decoding/encoding.

2.1 High-Level URL Object Conversion

url

url

:parse string [Procedure]
Parse string and return a url object, with one of the following "schemes": HTTP,
FTP, mailto, unknown.

:unparse url [Procedure]
Return the url object formatted as a string. Note: The username portion is not
included!

2.2 Low-Level URL Object Construction

url:

url:

url:

url:

make scheme [args. . .] [Procedure]
Construct a url object with specific scheme and other args. The number and meaning
of args depends on the scheme.

make-http host port path [Procedure]
Construct a HTTP-specific url object with host, port and path portions.

make-ftp user host port path [Procedure]
Construct a FTP-specific url object with user, host, port and path portions.

make-mailto address [Procedure]
Construct a mailto-specific url object with an address portion.

2.3 Low-Level URL Object Access

url

url

url

url

url

:scheme url [Procedure]
Extract and return the "scheme" portion of a url object. url:scheme is an unfortu-
nate term, but it is the technical name for that portion of the URL according to RFC
1738. Sigh.

:user url [Procedure]
Extract and return the "user" portion of the url object.

thost url [Procedure]
Extract and return the "host" portion of the url object.

rport url [Procedure]
Extract and return the "port" portion of the url object.

:path url [Procedure]
Extract and return the "path" portion of the url object.

Chapter 2: (www url)

NB: The following two procedures will NO LONGER BE AVAILABLE after 2012-12-31.

They are misguided attempts at abstraction better left behind.

url:address url
Extract and return the "address" portion of the url object.

url:unknown url
Extract and return the "unknown" portion of the url object.

2.4 Character Decoding/Encoding

url:decode str

Re-export url-coding:decode. See Chapter 5 [url-coding], page 13.

url:encode str reserved-chars

Re-export url-coding:encode. See Chapter 5 [url-coding], page 13.

[Procedure]

[Procedure]

[Procedure]

[Procedure]

Chapter 3: (www cgi) 9

3 (www cgi)

The (www cgi) module provides procedures to support painlessly writing Common Gateway
Interface scripts to process interactive forms. These scripts typically follow the following
steps: initialization and discovery, data transfer in, data transfer out.

3.1 Initialization and Discovery

cgi:init [opts. . .| [Procedure]
(Re-)initialize internal data structures. This must be called before calling any other
‘cgi:foo’ procedure. For FastCGI, call this “inside the loop” (that is, for each CGI
invocation).

opts are zero or more symbols that configure the module.

uploads-lazy
This controls how uploaded files, as per cgi:uploads and cgi:upload,
are represented.

cookies-split-on-semicolon
This causes cookies parsing to use #\; (semicolon), instead of the default
#\, (comma), for splitting multiple cookies. This is necessary, for exam-
ple, if the server is configured to provide “Netscape style” (i.e., old and
deprecated) cookies.

Unrecognized options are ignored.

cgi:form-data? [Procedure]
Return #t iff there is form data available.

cgi:names [Procedure]
Return a list of variable names in the form. The order of the list is the same as that
found in the form for the first occurance of each variable and each variable appears
at most once. For example, if the form has variables ordered a b a ¢ d b e, then the
returned list would have order a b c d e.

cgi:cookie-names [Procedure]
Return a list of cookie names.

3.2 Data Transfer In

cgi:getenv key [Procedure]
Return the value of the environment variable associated with key, a symbol. Unless
otherwise specified below, the return value is a (possibly massaged, possibly empty)
string. The following keys are recognized:

server-software

server-software-type ; part of server-software before "/"
server-software-version ; part of server-software after "/"
server—name

server-hostname ; alias for server-name

Chapter 3: (www cgi) 10

gateway-interface

server-protocol

server-protocol-name ; part of server-protocol before "/"
server-protocol-version ; part of server-protocol after "/"
server-port (integer)

request-method

path-info

path-translated

script-name

query-string

remote-host

remote-addr

auth-type

authentication-type ; alias for auth-type
remote-user

remote-ident

content-type

content-length (integer, possibly 0)

http-accept (list, possibly empty, of strings)
http-accept-types ; alias for http-accept-types
http-user-agent

http-cookie

Keys not listed above result in an "unrecognized key" error

cgi:values name [Procedure]
Fetch any values associated with name found in the form data. Return a list, even
if it contains only one element. A value is either a string, or #f. When there are
multiple values, the order is the same as that found in the form.

cgi:value name [Procedure]
Fetch only the CAR from (cgi:values name). Convenient for when you are certain
that name is associated with only one value.

cgi:uploads name [Procedure]
Return a list of file contents associated with name, or #£f if no files are available.

Uploaded files are parsed by parse-form (see Chapter 9 [form-2-form|, page 20). If
the uploads-lazy option is specified to cgi:init, then the file contents are those
directly returned by form-2-form. If unspecified, the file contents are strings with
the object property #:guile-www-cgi whose value is an alist with the following keys:

#:name identical to name (sanity check)

#:filename

original /suggested filename for this bunch of bits
#:mime-type

something like "image/jpeg"

#:raw-mime-headers
the MIME headers before parsing

Chapter 3: (www cgi) 11

Note that the string’s object property and the keys are all keywords. The associated
values are strings.

Unless uploads-1lazy is specified (to cgi:init), cgi:uploads can only be called once
per particular name. Subsequent calls return #f. Caller had better hang onto the
information, lest the garbage man whisk it away for good. This is done to minimize
the amount of time the file is resident in memory.

cgi:upload name [Procedure]
Fetch the first file associated with form var name. Can only be called once per name,
so the caller had better be sure that there is only one file associated with name. Use
cgi:uploads if you are unsure.

cgi:cookies name [Procedure]
Fetch any cookie values associated with name. Return a list of values in the order
they were found in the HTTP header, which should be the order of most specific to
least specific path associated with the cookie. If no cookies are associated with name,
return #f£.

cgi:cookie name [Procedure]
Fetch the first cookie value associated with name.

3.3 Uncollated Form Data

With cgi:values, when a name occurs more than once, its associated values are collated,
thus losing information about the relative order of different and intermingled names. For
this, you can use cgi:nv-pairs to access the uncollated (albeit ordered) form data.

cgi:nv-pairs [Procedure]
Fetch the list of (name . value), in the same order as found in the form data. A
name may appear more than once. A value is either a string, or #f.

Chapter 4: (www main) 12

4 (www main)

NB: This module will NO LONGER BE AVAILABLE after 2012-12-31. Using send-
request and receive-reply directly is more flexible and featureful (see Chapter 1 [http],
page 1).

The (www main) module provides a generic interface useful for retrieving data named by
any URL. The URL scheme http is pre-registered.

www:set-protocol-handler! proto handler [Procedure]
Associate for scheme proto the procedure handler. proto is a symbol, while handler
is a procedure that takes three strings: the host, port and path portions, respectively
of a url object. Its return value is the return value of www:get (for proto), and need
not be a string.

www:get url-string [Procedure]
Parse url-string into portions. For HTTP, open a connection, retrieve and return
the specified document. Otherwise, consult the handler procedure registered for the
particular scheme and apply it to the host, port and path portions of url-string. If
no such handler exists, signal "unknown URL scheme" error.

There is also the convenience proc www:http-head-get.

www:http-head-get url-string [alist?] [Procedure]
Parse url-string into portions; issue an "HTTP HEAD" request. Signal error if the
scheme for url-string is not http. Optional second arg alist? non-#f means return
only the alist portion of the HTTP response object.

Chapter 5: (www url-coding) 13

5 (www url-coding)

The (www url-coding) module provides two procedures for decoding and encoding URL
strings for safe transmission according to RFC 1738.

url-coding:decode str [Procedure]
Return a new string made from url-decoding str. Specifically, turn + into space, and
hex-encoded %XX strings into their eight-bit characters.

url-coding:encode str reserved-chars [Procedure]
Return a new string made from url-encoding str, unconditionally transforming those
in reserved-chars, a list of characters, in addition to those in the standard (internal)
set.

Chapter 6: (www utcsec) 14

6 (www utcsec)

The (www utcsec) module provides procedures to work with the utc-seconds of an object,
that is, the number of seconds after epoch, in the GMT time zone (also known as UTC).

format-utcsec port format utc-seconds [Procedure]
Write to output port port the utc-seconds formatted according to format (a string).
If port is #£, return the output string, instead. This uses strftime, q.v.

rfc1123-date<- port utc-seconds [Procedure]
Write to output port port the utc-seconds formatted according to RFC1123. If port
is #£f, return the output string, instead.

For example:

(rfcl123-date<- #f 1167791441)
= "Wed, 03 Jan 2007 02:30:41 GMT"

<-rfcl123-date s [Procedure]
Parse the RFC1123-compliant date string s, and return the utc-seconds it represents.

For example:

(<-rfc1123-date "Wed, 03 Jan 2007 02:30:41 GMT")
= 1167791441

<-mtime filespec [Procedure]
Return the utc-seconds of the modification time of filespec. filespec can be a filename
(string), a port opened on a statable file, or the object resulting from a stat on one
of these.

For example:
(= (<-mtime "COPYING")
(<-mtime (open-input-file "COPYING"))
(<-mtime (stat "COPYING")))
= {#t

<-ctime filespec [Procedure]
Return the utc-seconds of the creation time of filespec. filespec can be a filename
(string), a port opened on a statable file, or the object resulting from a stat on one
of these.

rfc1123-now [Procedure]
The "current time" formatted according to RFC1123.

Chapter 7: (www server-utils big-dishing-loop) 15

7 (www server-utils big-dishing-loop)

The (www server-utils big-dishing-loop) module provides procedures that facilitate
generation of a customized listener /dispatch proc.

named-socket family name [keyword value. . .] [Procedure]
Keywords: socket-setup

Return a new socket in protocol family with address name.

First, evaluate (socket family SOCK_STREAM O) to create a new socket sock. Next,
handle #:socket-setup, with value setup, like so:

#f Do nothing. This is the default.
procedure Call procedure on sock.

(Copt . val) ...)
For each pair in this alist, call setsockopt on sock with the pair’s opt
and val.

Lastly, bind sock to name, which should be in a form that is appopriate for family.
Two common cases are:

PF_INET (AF_INET ipaddr portno), made, for example, by
(1ist AF_INET INADDR_ANY 4242).

PF_UNIX (AF_UNIX filename), made, for example, by
(1ist AF_UNIX "/tmp/foo-control").

Note that PF_foo, AF_foo, and INADDR_foo are names of variables that have constant
values, not symbols.

echo-upath M upath [extra-args. . .] [Procedure]
Use mouthpiece M (see Chapter 13 [answer]|, page 31) to compose and send a
"text/plain" response which has the given upath (a string) and any extra-args as its
content. Shut down the socket for both transmission and reception, then return #t.

This proc can be used to ensure basic network connectivity (i.e., aliveness testing).

make-big-dishing-loop [keyword value...] [Procedure]
Return a proc dish that loops serving http requests from a socket. dish takes one arg
ear, which may be a pre-configured socket, a TCP port number, or a list of the form:
(family address ...). When ear is a TCP port number, it is taken to be the list
(PF_INET AF_INET INADDR_ANY ear).

In the latter two cases, the socket is realized by calling named-socket with parameters
family and name taken from the CAR and CDR, respectively, of the list, with the
#:socket-setup paramater (see below) passed along unchanged.

dish behavior is controlled by the keyword arguments given to make-big-dishing-
loop. The following table is presented roughly in order of the steps involved in
processing a request, with default values shown next to the keyword.

Chapter 7: (www server-utils big-dishing-loop) 16

#:socket-setup #f
This may be a proc that takes a socket, or a list of opt/val pairs which
are passed to setsockopt. Socket setup is done for newly created sockets
(when dish is passed a TCP port number), prior to the bind call.

#:queue-length 0
The number of clients to queue, as set by the 1isten system call. Setting
the queue length is done for both new and pre-configured sockets.

#:concurrency #:new-process
The type of concurrency (or none if the value is not recognized). Here
are the recognized values:

#:new-process

#:new-process/nowait
Fork a new process for each request. The latter does not wait
for the child process to terminate before continuing the listen
loop.

#f Handle everything in the current in process (no concurrency).
Unrecognized values are treated the same as #f.

#:bad-request-handler #f
If the first line of an HTTP message is not in the proper form, this
specifies a proc that takes a mouthpiece m. Its return value should be
the opposite boolean value of the #:1loop-break-bool value, below. See
Chapter 13 [answer], page 31.

#:method-handlers ()
This alist describes how to handle the (valid) HTTP methods. Each
element has the form (method . handler). method is a symbol, such as
GET; and handler is a procedure that handles the request for method.

handler normally takes two arguments, the mouthpiece m and the upath
(string), composes and sends a response, and returns non-#f to indicate
that the big dishing loop should continue.

The proc’s argument list is configured by #:need-headers, #:need-
input-port and #:explicit-return. Interpretation of the proc’s return
value is configured by #:explicit-return and #:loop-break-bool. See
below.

#:need-headers #f£

#:need-input-port #f
If non-#£f, these cause additional arguments to be supplied to the han-
dler proc. If present, the headers arg precedes the input port arg. See
Chapter 8 [parse-request|, page 18. The input port is always positioned
at the beginning of the HTTP message body.

If #:need-input-port is #£f, after the handler proc returns, the port is
shutdown in both (r/w) directions. When operating concurrently, this
is done on the child side of the split. See Section “Network Sockets and
Communication” in The Guile Reference Manual.

Chapter 7: (www server-utils big-dishing-loop) 17

:explicit-return #f

If non-#£, this arranges for a continuation to be passed (as the last argu-
ment) to the handler proc, and ignores that proc’s normal return value
in favor of one explicitly passed through the continuation. If the con-
tinuation is not used, the effective return value is computed as (not
#:1loop-break-bool).

:loop-break-bool #f

Looping stops if the effective return value of the handler is eq? to this
value.

:unknown-http-method-handler #f

If #£, silently ignore unknown HTTP methods, i.e., those not specified
in #:method-handlers. The value may also be a procedure that takes
three arguments: a mouthpiece m, the method (symbol) and the upath
(string). Its return value should be the opposite boolean value of the
#:loop-break-bool value, below. See Chapter 13 [answer]|, page 31.

:parent-finish close-port

:log #f

When operating concurrently (#:concurrency non-#f), the “parent” ap-
plies this proc to the port after the split.

This proc is called after the handler proc returns. Note that if ear is a
unix-domain socket, the client parameter will be simply "localhost". See
Chapter 14 [log], page 36.

:status-box-size #f

:style #f

This may be a non-negative integer, typically 0, 1 or 2. It is used by
#:1og (has no meaning if #:1og is #f). See Chapter 14 [log], page 36

An object specifying the syntax of the first-line and headers. The default
specifies a normal HTTP message (see Chapter 1 [http], page 1).

The combination of #:need-headers, #:need-input-port and #:explicit-return
mean that the #:GET-upath proc can receive anywhere from two to five arguments. Here
is a table of all the possible combinations (1 means non-#f and 0 means #f):

#:explicit-return
+--- #:need-input-port
+- #:need-headers

args to #:GET-upath proc

P R, PR, PO O0OO0OO0O
R R, OOk, =, OO
P OFr O OFr O

upath
upath
upath
upath
upath
upath
upath
upath

EEEEERRERRER

headers
in-port
headers
return

headers
in-port
headers

in-port

return
return
in-port return

Chapter 8: (www server-utils parse-request) 18

8 (www server-utils parse-request)

The (www server-utils parse-request) module provides procedures to read the first line,
the headers and the body, of an HT'TP message on the input port.

receive-request port [keyword value...] [Procedure]
Keywords: s2s, style

Return a request object read from port. Use s2s (defaults to string-titlecase) to
normalize the header names. With #:s2s string-downcase, for instance, you would
see (host . "example.com") in the headers field of the request object.

Keyword arg style is an object specifying the syntax of the initial (non-body) portion.
By default, parse expects a normal HTTP 1.1 request message as per RFC 2616.

request [Type]
A request object has five fields.

method A symbol, such as GET.

upath A string. You can use hqf<-upath and alist<-query to break this down
further.

protocol-version
A pair of integers indicating the protocol version. For example, (1 . 1)
corresponds to HTTP 1.1.

headers A list of pairs (name . value), aka alist, where name is a symbol and
value is a string. How name is normalized depends on which s2s was
specified to receive-request.

body Either #f or a procedure get-body. This should be called with one arg,
flags, to retrieve the request body. See Chapter 1 [http], page 1, procedure
receive-response, for flags documentation.

request? obj [Procedure]
Return #t if obj is a request object.

request-method req [Procedure]
request-upath req [Procedure]
request-protocol-version req [Procedure]
[]
[]

request-headers req Procedure

request-body req Procedure
Return the respective field of request object req.

hqf<-upath upath [Procedure]

Parse string upath and return three values representing its hierarchy, query and frag-
ment components. If a component is missing, its value is #f.

(hqf<-upath "/aa/bb/cc?def=xyz&hmm#frag")
= "/aa/bb/cc"

= "def=xyz&hmm"

= "frag"

Chapter 8: (www server-utils parse-request) 19

(hgf<-upath "/aa/bb/cc#fr?ag")
= "/aa/bb/cc"

= #f
= "fr7ag"
alist<-query query-string [Procedure]

Parse urlencoded query-string and return an alist. For each element (name . value)
of the alist, name is a string and value is either #£ or a string.

NB: The following four procedures will NO LONGER BE AVAILABLE after 2013-02-28.
Better to use receive-request.

read-first-line port [Procedure]
Parse the first line of the HTTP message from input port and return a list of the
method, URL path and HTTP version indicator, or #£ if the line ends prematurely
or is otherwise malformed. A successful parse consumes the trailing ‘CRLF’ of the
line as well. The method is a symbol with its constituent characters upcased, such
as GET; the other elements are strings. If the first line is missing the HTTP version,
parse-first-1line returns the default "HTTP/1.0".

read-headers port [Procedure]
Parse the headers of the HT TP message from input port and return a list of key/value
pairs, or #f if the message ends prematurely or is otherwise malformed. Both keys
and values are strings. Values are trimmed of leading and trailing whitespace and may
be empty. Values that span more than one line have their "continuation whitespace"
reduced to a single space. A successful parse consumes the trailing ‘CRLF’ of the
header block as well.

Sometimes you are interested in the body of the message but not the headers. In this case,
you can use skip-headers to quickly position the port.

skip-headers port [Procedure]
Scan without parsing the headers of the HT'TP message from input port, and return
the empty list, or #f if the message ends prematurely. A successful scan consumes
the trailing ‘CRLF’ of the header block as well.

read-body len port [Procedure]
Return a new string of len bytes with contents read from input port.

Chapter 9: (www server-utils form-2-form) 20

9 (www server-utils form-2-form)

The (www server-utils form-2-form) module provides a procedure to parse a string in
‘multipart/form-data’ format.

parse-form content-type-more raw-data [Procedure]
Parse raw-data as raw form response data of enctype ‘multipart/form-data’ and
return an alist.
content-type-more is a string that should include the boundary="..." information.
(This parameter name reflects the typical source of such a string, the Content-Type
header value, after the ‘multipart/form-data’.)
Fach element of the alist has the form (name . value), where name is a string and
value is either a string or four values (extractable by call-with-values):

filename A string, or #f.
type A string representing the MIME type of the uploaded file.

raw-headers
A string, including all eol CRLF chars. Incidentally, the type should be
(redundantly) visible in one of the headers.

squeeze A procedure that takes one arg abr (standing for access byte range). If
abr is #£f, then internal references to the uploaded file’s data are dropped.
Otherwise, abr should be a procedure that takes three arguments: a
string, a beginning index (integer, inclusive), and an ending index (inte-
ger, exclusive).

If there is no type information, value is a simple non-empty string, and no associated

information (filename, raw-headers, squeeze) is kept.

parse-form ignores degenerate uploads, that is those parts of raw-data where the
part header specifies no filename and the part content-length is zero or unspecified.

why squeeze?

The squeeze interface can help reduce data motion. Consider a common upload scenario:
client uploads file(s) for local (server-side) storage.

classic squeeze

* * 0. (current-input-port)

* * 1. Guile-WWW string (for parsing purposes)
* 2. your substring (image/jpeg)

* * 3. filesystem

You can achieve the same effect as the “classic” approach by specifying substring (or
something like it) as the access-byte-range proc, but you don’t have to. You could, instead,
call squeeze with a procedure that writes the byte range directly to the filesystem.

Chapter 10: (www server-utils filesystem) 21

10 (www server-utils filesystem)

The (www server-utils filesystem) module provides procedures for cleaning filenames,
checking filesystem access, and mapping from a URL path to a filename.

cleanup-filename name [Procedure]
Return a new filename made from cleaning up filename name. Cleaning up is a
transform that collapses each of these, in order:

° 4//7
° 4/./7
e ‘/foo/../’

into a single slash (‘/’), everywhere in name, plus some fixups. The transform nor-
mally preserves the trailing slash (if any) in name, and does not change any leading
‘.. components if name is relative, i.e., does not begin with slash. Due to proper
‘/foo/../’ cancellation for relative name, however, the result may be the empty
string. (Here, proper means that foo is not ‘..’, but a normal filename component.)

Following is a fairly comprehensive list of the cleanup-filename edge cases, paired by
name and result. The numbers represent string lengths.

0 ;5 empty string

0 ;3 result is empty string

1/

1/

2 ok

2 ok

3 ok/

3 ok/

3 /ok

3 /ok

4 /ok/

4 /ok/

1 . ;3 relative name

0 ;3 result is empty string

2 ./ ;5 likewise

0 ; ; note, end-slash not preserved
/.

Chapter 10: (www server-utils filesystem)

3 /./
1/
2 .. ;3 relative, with leading double-dot
2 .. ;3 unchanged
3 ../ ;3 likewise
3 ../
/.. ;; absolute
1/ ;5 can’t go higher than root
4 /../
1/
4 /.. ;; next 8 are like the previous 4;
2 .. ;; they show that . makes no difference
5 ./../
3 ../
5 /./
1/
/...
1/
4 ../.
2
5 .././
3 ../
/../.
1/
6 /.././
1/
5 ../.. ;3 relative
5 ../.. ;3 leading .. sequences unchanged
6 ../../
6 ../../
6 /../.. ;3 absolute

1/ ;3 can’t go higher than root

Chapter 10: (www server-utils filesystem)

10

©

10

10

z/..

z/../

/z/..

/

/z/ ../
/

z/../0

o

z/../o/
o/

/z/../0o
/o

/z/../0o/
/o/

z/./../o

o

z/./../o/
o/

/z/./../o
/o

/z/./../0/
/o/

z/../../0
../o

z/../../o/
../o/

/z/../../o

;3 relative
;5 only dir cancelled = empty string

;3 likewise

;3 absolute

;5 next 4 like previous 4, with trailing component

;3 next 4 like previous 4;
;3 they show that . makes no difference

; ; relative, more double-dot than parents
;3 leftover double-dot preserved

; 3 absolute, more double-dot than parents

23

Chapter 10: (www server-utils filesystem) 24

2 /o ;3 all cancelled
11 /z/../../0o/
3 /o/
43 ../../abc/././bye0/./../def/byel/bye2/../.. ;; bye bye-bye

14 ../../abc/def/

44 ../../abc/././bye0/./../def/byel/bye2/../../
14 ../../abc/def/

44 /../../abc/././bye0/./../def/byel/bye2/../..
9 /abc/def/

45 /../../abc/././bye0/./../def/byel/bye2/../../
9 /abc/def/

access-forbidden?-proc docroot forbid-rx [Procedure]
Create and return a filesystem-access procedure based on docroot and forbid-rx. The
returned procedure p takes a filename and returns #t if access to that file should be
denied for any of the following reasons:

e filename does not begin with docroot

e filename matches regular expression forbid-rx

If forbid-rx is #f, the regular expression check is skipped. p returns #f if access should
be granted.

upath->filename-proc docroot [dir-indexes] [Procedure]
Create and return a url-path-to-filename mapping procedure based on docroot. The
returned procedure p takes a (string) upath and returns a valid local filename path
for the requested resource, or #£ if that file cannot be found. Optional arg dir-indexes
specifies an ordered list of filenames to try if the resolved filename path turns out to
be a directory.

If no such files exist, return the directory name. As a special case, when p encounters
a value of #f during iteration over dir-indexes, it returns #f immediately.

For example, presuming files /a/b/c.txt and /a/b/index.html both exist and are
readable:

(define resolve (upath->filename-proc
||/a/b/"
’("index.shtml" "index.html")))

(resolve "/random") = #f
(resolve "/c.txt") = "/a/b/c.txt"
(resolve "/") = "/a/b/index.html"

Directory names are always returned with a trailing slash.

Chapter 10: (www server-utils filesystem) 25

filename->content-type filename [default] [Procedure]
Return a valid Content-Type string which matches filename best. Matching is done
by comparing the extension (part of filename after the last "." if available) against

a table. If none match, return "application/octet-stream". Optional arg default
specifies another value to use instead of "application/octet-stream".

If there are multiple MIME types associated with the extension, return the first one.

See Chapter 17 [mime-types]|, page 39, proc put-mime-types!, for more info.

Chapter 11: (www server-utils cgi-prep) 26

11 (www server-utils cgi-prep)

Often the server cannot do everything by itself, and makes use of external programs invoked
in a common gateway interface environment. These programs are also known as CGI scripts.

The (www server-utils cgi-prep) module provide a procedure to set up such an en-
vironment. Actually invoking the CGI script is not covered.

cgi-environment-manager initial-bindings [Procedure]
Return a closure encapsulating initial-bindings, a list of pairs (name . value), where
name is a symbol listed in the following table, and value is a string unless otherwise
noted.

e server-hostname

e gateway-interface

e server-port (integer)

e request-method

e path-info

e path-translated

e script-name

e query-string

e remote-host

e remote-addr

e authentication-type

e remote-user

e remote-ident

e content-type

e content-length (integer, or #f)

e http-user-agent

e http-cookie

e server-software

e server-protocol

e http-accept-types (list of strings)
If name is not recognized, signal "unrecognized key" error. Encapsulation includes
name=value formatting.
The closure accepts these commands:

name value
Encapsulate an additional binding. name and value are as above.

#:clear! Drop the additional bindings. Note that initial bindings can never be
dropped (you can always create a new closure).

#:environ-list
Return a list of strings suitable for passing to environ or as the second
argument to execle.

Any other command results in a "bad command" error.

Chapter 11: (www server-utils cgi-prep) 27

example

Following is a simple example of how to use cgi-environment-manager. A more realistic
example would include port and connection management, input validation, error handling,
logging, etc. First, we set up the manager with more-or-less constant bindings.
(define M (cgi-environment-manager
> ((server-software . "FooServe/24")
(server-protocol . "HTTP/1.0")
(server-port . 80))))
Later, we add connection-specific bindings. We use read-first-line from the Chapter 8
[parse-request], page 18 module.
(define PORT ...)
(define UPATH (list-ref (read-first-line PORT) 1))
(define QMARK (string-index UPATH #\7))
(define CGI (substring UPATH O QMARK))

(M ’script-name CGI)
(M ’query-string (substring UPATH (1+ QMARK)))

Lastly, we spawn the child process, passing the constructed environment as the second arg
to execle, and drop the connection-specific bindings afterwards.
(let ((pid (primitive-fork)))
(if (zero? pid)
(execle CGI (M #:environ-list) (list CGI)) ; child
(waitpid pid))) ; parent

(M #:clear!)

Now we can re-use M for another connection.

Chapter 12: (www server-utils cookies) 28

12 (www server-utils cookies)

Cookies are bits of client-side state the server can maintain through designated HTTP re-
sponse headers. At this time (2009), there are two specifications, RFC2109' and RFC29652,
the latter obsoleting the former.

This chapter describes the (www server-utils cookies) module, which provides facili-
ties for creating such headers, and parsing those sent by the client. Procedures that return
trees are meant to be used with the mouthpiece command #:add-header (see Chapter 13
[answer]|, page 31).

simple-parse-cookies string [sep] [Procedure]
Parse string for “cookie-like fragments”, that is, zero or more substrings of the form
name=value, separated by character sep and optionally trailing whitespace. By de-
fault, sep is #\, (comma).

Return a list of elements (name . value), where both name and value are strings.
For example:

(define COOKIE "abc=def; z=z, ans=\"42\", abc=xyz")

(simple-parse-cookies COOKIE)
= ((“abc" . “def; Z=Z") ("ans" . ||\||42\n||) ("abc“ . "XyZ“))

(simple-parse-cookies COOKIE #\;)
= (("abc" . "def") ("z" . "z, ans=\"42\", abc=xyz"))

rfc2109-set-cookie-string name value [keyword value...] [Procedure]
Keywords: path, domain, expires, secure

Return a string suitable for inclusion into an HTTP response header as a cookie with
name and value. Both args may be strings, symbols or keywords. Also, recognize and
format appropriately the optional keyword parameters #:path, #:domain, #:expires
(strings); and #:secure (boolean).

rfc2965-set-cookie2-tree M [cookie-specs. . .| [Procedure]
Compute a list suitable for inclusion in an HTTP response header, composed by
formatting cookie-specs, each a list of the form (name value al vi...). Each name
may be a string, symbol or keyword. Each value may be a string or symbol. Each a
must be a keyword, precisely one of:

#:Comment #:CommentURL #:Discard #:Domain

#:Max-Age #:Path #:Port #:Secure
The #:Version attribute is automatically included as the last one; it cannot be spec-
ified (or de-specified).
Possible values for v depend on a. If a is #:Discard or #:Secure, then there is no
v (it must be omitted). If a is #:Port, then v must be either a number; a list of

numbers, for instance (8001 8002 8003); or omitted entirely. If a is #:Max-Age, then
v must be a number. For all other a, v can be a string or symbol.

L RFC2109
2 RFC2965

http://www.faqs.org/rfcs/rfc2109.html
http://www.faqs.org/rfcs/rfc2965.html

Chapter 12: (www server-utils cookies) 29

If M is #f, return a list. The CAR of the list is the keyword #:Set-Cookie2, and
the CDR is a tree of strings. Otherwise M should be a mouthpiece (see Chapter 13
[answer]|, page 31) in which case it is applied with the #:add-header command to the
list.

example

Here is an example that demonstates both RFC2109 and RFC2965 formatting. Notable
differences: the keyword to specify the path is now capitalized; the representation of the
cookie’s value is now double-quoted.

;5 RFC2109
(rfc2109-set-cookie-string ’war ’lose #:path "/ignorance/suffering")
= "Set-Cookie: war=lose; path=/ignorance/suffering"

;3 RFC2965
(use-modules ((www server-utils answer) #:select (walk-tree)))

(define TREE (rfc2965-set-cookie2-tree
> (war lose #:Path "/ignorance/suffering" #:Discard)))

(car TREE)
= #:Set-Cookie2

(walk-tree display (cdr TREE))
- war="lose";Path="/ignorance/suffering";Discard;Version=1

To generate a cookie spec from the Cookie http response header sent by a client, you can
use rfc2965-parse-cookie-header-value.

rfc2965-parse-cookie-header-value s [flags. . .| [Procedure]
Parse the Cookie HTTP response header string s. Return a list of the form (vers
n [cookie-spec...]), where vers is the version number of the cookie specification,
0 (zero) for RFC2109 compliance and 1 (one) for RFC2965 compliance; and n is the
number of cookie-specs the CDR of the form.

Each cookie-spec has the form: (name value al v1...). name, value are strings.
Fach a is a keyword, one of #:Path, #:Domain or #:Port. Each v is a string, except
for that associated with #:Port, which is can be either a single number or a list of
numbers.

Optional flags configure the parsing and/or return value.

#:keep-attribute-dollarsign-prefix
Prevent conversion of, for example, #:$Port to #:Port.

#:strict-comma-separator
Disable support for older clients that use a semicolon to separate cookies
instead of a comma. Normally, parsing copes (heuristically) with this by
reparsing an unrecognized attribute as the beginning of a new cookie.
With this flag, an unrecognized attribute signals an error.

Chapter 12: (www server-utils cookies) 30

#:canonicalize-NAME-as-keyword
Convert the name in each cookie-spec into a keyword whose first character
and characters following a hyphen are upcased. For example, "session-
id-no" would become #:Session-Id-No.

Parsing may signal an error and display an error message in the form: “situation while
context”, where situation is one of “unexpected end”, “missing equal-sign”, “bad
attribute”, or “missing semicolon”; and context is one of: “reading string”, “reading
token”, “reading pair”, “reading one cookie” or “parsing”. The error message also
displays string s on a line by itself and on the next line a caret by itself indented to
be at (or near) the site of the error.

RFC2965 also specifies some other small algorithms, some of which are codified as proce-
dures available in this module.

reach h [Procedure]
Return the reach (a string) of host name h. Quoting from RFC2965 section 1 (Ter-
minology):

The reach R of a host name H is defined as follows:
If
- H is the host domain name of a host; and,
- H has the form A.B; and
- A has no embedded (that is, interior) dots; and
- B has at least one embedded dot, or B is the string "local".
then the reach of H is .B.
Otherwise, the reach of H is H.

Note that comparison with "local" uses string=7, i.e., case-sensitively.

Chapter 13: (www server-utils answer) 31

13 (www server-utils answer)

The (www server-utils answer) module provides a simple wrapper around the format-
ting/accounting requirements of a standard HTTP response. Additionally, the #:rechunk-
content facility allows some degree of performance tuning; a server may be able to achieve
better throughput with certain chunk sizes than with others.

The output from compose-response, mouthpiece and string<-headers is formatted
according to their optional style argument. By default, headers have the form:

NAME ": " VALUE CR LF

Additionally, for compose-response and mouthpiece, the first line, preceding all the head-
ers, has the form:

"HTTP/" MAJOR "." MINOR SP NNN SP MSG

and a single CRLF pair separates the headers from the body. (Actually, mouthpiece hard-
codes the protocol version to ‘1.0’, which is one reason why new code should use compose-
response.) See Chapter 15 [modlisp|, page 37, for another way to format this information.

compose-response host [keyword value...] [Procedure]
Keywords: style, protocol-version

Return a command-delegating closure capable of writing a properly formatted HTTP
1.1 response with Host header set to host. The actual status and header format is
controlled by style, an opaque object. The actual protocol version is controlled by
protocol-version, a pair of integers, such as (1 . 0) to indicate HTTP 1.0.

The returned closure r accepts commands and args:

#:set-protocol-version pair
Set the major and minor version protocol-version numbers.

#:set-reply-status number message
Set the reply status. message is a short string.

#:add-header name value
name may be #f, #t, a string, symbol or keyword. value is a string. If
name is #f or #t, value is taken to be a pre-formatted string, "A: B" or
"A: B\r\n", respectively. If name is not a boolean, value may also be a
tree of strings or a number.

#:add-content [tree ...]
tree may be a string, a nested list of strings, or a series of such. Subse-
quent calls to #:add-content append their trees to the collected content
tree thus far.

#:add-formatted format-string [args ...]
format-string may be #f to mean ~S, #t to mean "A, or a normal format
string. It is used to format args, and the result passed to #:add-content.

#:add-direct-writer len write
len is the number of bytes that procedure write will output to its arg,
out-port (passed back), when called during #:send-reply. This is to
allow sendfile(2) and related hackery.

Chapter 13: (www server-utils answer) 32

#:entity-length
Return the total number of bytes in the content added thus far.

#:rechunk-content chunk
chunk may be #f, in which case a list of the string lengths collected thus
far is returned; #t which means to use the content length as the chunk size
(effectively producing one chunk); or a number specifying the maximum
size of a chunk. The return value is a list of the chunk sizes.

It is an error to use #:rechunk-content with a non-#f chunk in the
presence of a previous #:add-direct-writer.

#:inhibit-content! bool
Non-#f bool arranges for #:send-reply (below) to compute content
length and add the appropriate header, as usual, but no content is actu-
ally sent. This is useful, e.g., when answering a HEAD request. If bool is
#f, #:send-reply acts normally (i.e., sends both headers and content).

#:send! sock [flags]
Send the properly formatted response to file-port sock. It is an error to
invoke #:send-reply without having first set the reply status.

Optional arg flags are the same as for send-request. See Chapter 1
[http], page 1.

mouthpiece out-port [status-box [style]] [Procedure]
Return a command-delegating closure capable of writing a properly formatted HTTP
1.0 response to out-port. Optional arg status-box is a list whose CAR is set to the
numeric status code given to a #:set-reply-status command. If status-box has
length of two or more, its CADR is set to the content-length on #:send-reply. A
content-length value of #f means there have been no calls to #:add-content. The
commands and their args are:

#:reset-protocol!
Reset internal state, including reply status, headers and content. This is
called automatically by #:send-reply.

#:set-reply-status number message
Set the reply status. message is a short string.

#:set-reply-status:success
This is equivalent to #:set-reply-status 200 "0K".

#:add-header name value
name may be #f, #t, a string, symbol or keyword. value is a string. If
name is #f or #t, value is taken to be a pre-formatted string, "A: B" or
"A: B\r\n", respectively. If name is not a boolean, value may also be a
tree of strings or a number.

#:add-content [tree ...]
tree may be a string, a nested list of strings, or a series of such. Subse-
quent calls to #:add-content append their trees to the collected content
tree thus far.

Chapter 13: (www server-utils answer) 33

#:add-formatted format-string [args ...]

format-string may be #f to mean ~S, #t to mean ~A, or a normal format
string. It is used to format args, and the result passed to #:add-content.

#:add-direct-writer len write

len is the number of bytes that procedure write will output to its arg,
out-port (passed back), when called during #:send-reply. This is to
allow sendfile(2) and related hackery.

#:content-length

Return the total number of bytes in the content added thus far.

#:rechunk-content chunk

chunk may be #f, in which case a list of the string lengths collected thus
far is returned; #t which means to use the content length as the chunk size
(effectively producing one chunk); or a number specifying the maximum
size of a chunk. The return value is a list of the chunk sizes.

It is an error to use #:rechunk-content with a non-#f chunk in the
presence of a previous #:add-direct-writer.

#:inhibit-content! bool

Non-#f bool arranges for #:send-reply (below) to compute content
length and add the appropriate header, as usual, but no content is actu-
ally sent. This is useful, e.g., when answering a HEAD request. If bool is
#f, #:send-reply acts normally (i.e., sends both headers and content).

#:send-reply [close]

example

Send the properly formatted response to out-port, and reset all inter-
nal state (status reset, content discarded, etc). It is an error to invoke
#:send-reply without having first set the reply status.

Optional arg close means do a shutdown on out-port using close — di-
rectly, if an integer, or called with no arguments, if a thunk — as the
shutdown how argument. (Note: If out-port is not a socket, this does
nothing silently.) See Section “Network Sockets and Communication” in
guile.

If close is specified, the closure forgets about out-port internally; it is an
error to call other mouthpiece commands, subsequently.

Here is an example that uses most of the mouthpiece commands:

(use-modules (www server-utils filesystem) (scripts slurp))

(define
(define
(define
(define

(define

SERVER-NAME "Guile-WWW-example-server")
SERVER-VERSION "1.0")

STATUS (list #f #f))

M (mouthpiece (open-output-file "fake") STATUS))

(transmit-file filename)

Chapter 13: (www server-utils answer) 34

(M #:set-reply-status:success)
(M #:add-header ’Server (string-append SERVER-NAME "/"
SERVER-VERSION))
(M #:add-header ’Connection "close")
(M #:add-header ’Content-Type (filename->content-type
filename "text/plain"))
(M #:add-content (slurp filename))
(simple-format #t "rechunked: ~“A~%"
(M #:rechunk-content (* 8 1024)))
;; We don’t shutdown because this is a file port;
;5 1f it were a socket, we might specify 2 to
;; stop both reception and transmission.
(M #:send-reply))

(transmit-file "COPYING")

- rechunked: (8192 8192 1605)
STATUS

= (200 17989)

For higher performance, you can preformat parts of the response, using CRLF, and some
lower-level convenience procedures. If preformatting is not possible (or desirable), you can
still declare a nested list of strings (aka tree) to have a flat length, i.e., the size in bytes a
tree would occupy once flattened, thus enabling internal optimizations. (The flat length of
a string is its string-length.)

CRLF [Constant String]
The string “\r\n”.

flat-length object [Object Property]
Return the flat length of object, or #£f if not yet computed.

fs s [args. . .| [Procedure]
Return a new string made by using format string s on args. As in simple-format
(which this procedure uses), A expands as with display, while ~S expands as with
write.

walk-tree proc tree [Procedure]
Call proc for each recursively-visited leaf in tree, excluding empty lists. It is an error
for tree to contain improper lists.

tree-flat-length! tree [Procedure]
If tree is a string, return its string-length. If tree already has a flat-length,
return that. Otherwise, recursively compute, set, and return the flat-length of
tree.

string<-tree tree [Procedure]
Return a new string made from flattening tree. Set the flat-length (using tree-
flat-length!) of tree by side effect.

Chapter 13: (www server-utils answer) 35

string<-headers alist [style] [Procedure]
Return a string made from formatting name/value pairs in alist, according to the
optional style argument. If unspecified or specified as #f, the default is to format
headers like so:

NAME #\: #\space VALUE #\cr #\1f

Each name may be a string, symbol or keyword. Each value may be a string, number,
symbol, or a tree.

example

Here is transmit-file from the above example, slightly modified to use preformatted
headers and fs:

(define CONSTANT-HEADERS
(string<-headers
“((#:Server . ,(fs ""A “A" SERVER-NAME SERVER-VERSION))
(#:Connection . "close"))))

(define (transmit-file filename)
(M #:set-reply-status:success)
(M #:add-header #t CONSTANT-HEADERS)
(M #:add-header ’Content-Type (filename->content-type
filename "text/plain"))
(M #:add-content (slurp filename))
(display (fs "rechunked: "A~Y%" (M #:rechunk-content (* 8 1024))))
(M #:send-reply))

Note that mouthpiece accepts trees for both #:add-header and #:add-content commands.
Thus, the following two fragments give the same result, although the latter is both more
elegant and more efficient:
;5 Doing things "manually".
(walk-tree (lambda (string)
(M #:add-content string))
tree)

;3 Letting the mouthpiece handle things.
(M #:add-content tree)

Chapter 14: (www server-utils log) 36

14 (www server-utils log)

The (www server-utils log) module provides procedure generators for writing log infor-
mation to an output port. Each generator is conventionally named 1og-SOMETHING-proc.

string<-sockaddr saddr [Procedure]
Return a string describing the AF_INET or AF_UNIX socket address object saddr. This
is typically found as the CDR of the accept return value.

For AF_UNIX, return "localhost" unless (somehow) the expression (sockaddr:path
saddr) has non-#f and non-empty-string value.

For AF_INET the format is hostname: port, where hostname is from inet-ntoa and
port is an integer.

For any other family, return what object->string returns.

log-http-response-proc port [gmtime? [stamp-format [Procedure]
[method-pair?]]]
Return a procedure that writes an HT'TP response log entry to port. The procedure
is called with args client, method, upath (strings or symbols) and status (either an
atom or a list), and writes a one-line entry of the form:

CLIENT - - [YYYY-MM-DD:HH:MM:SS TZ] "METHOD UPATH" ST1 ST2...

where the ‘YYYY..TZ’ are the year, month, day, hour, minute, second and timezone
components, respectively, of the localtime representation of the current time; and
‘STn’ are the space-separated elements of status.

Optional second arg gmtime? non-#f means use gmtime instead of localtime.
Optional third arg stamp-format specifies a format string passed to strftime to
use for the timestamp portion that appears between the square braces (default:
"%Y-Y%m-%d: hH: WM %S hZ").

Optional fourth arg method-pair? non-#f means that method is expected to be a pair
(meth . vers), in which case the portion between the double quotes becomes "meth
upath vers". This is to support excruciating conformity to Apache for the benefit
of downstream programs that might fall over less than gracefully otherwise. Please
enjoy the slack.

The buffering mode for port is set to line-buffered.

Chapter 15: (www server-utils modlisp) 37

15 (www server-utils modlisp)

The (www server-utils modlisp) module provides support for the implementing the Lisp
side of the Apache mod_lisp protocol, in the form of a header-grokking protocol object for
the big dishing loop, and a style elements object for the mouthpiece. When these objects
are specified, the headers are read from (written to) the Apache front end in the form:

name #\1f value #\1f
with a lone ‘end\n’ to separate the headers from the body. Furthermore, on input, the head-
ers must include method, url and server-protocol. On output, the status information
(always output first) has the form:

"Status" #\1f nnn #\space msg #\1f

Note that this is in essense the same format as used for the headers, with name being
‘Status’ and value being ‘nnn msg’.

modlisp-hgrok [Object]
An object suitable for the #:style argument to both make-big-dishing-loop (see
Chapter 7 [big-dishing-loop], page 15) and receive-request (see Chapter 8 [parse-
request|, page 18).

modlisp-ish [Object]
An object suitable as the optional style argument for string<-headers, compose-
response and mouthpiece. See Chapter 13 [answer]|, page 31.

Although these are separate objects, you should probably use or not use them in con-
junction, lest the front-end (Apache) server become confused.

Chapter 16: (www data http-status) 38

16 (www data http-status)

The (www data http-status) module exports a single procedure:

http-status-string number [Procedure]
Return the string associated with HT'TP status number.

example

Here is a simple example using this module:

(use-modules ((www data http-status)
#:select (http-status-string)))

(define (h2 n)
(format #f "<H2>~A ~A</H2>"
n (http-status-string n)))

(h2 404) = "<H2>404 Not Found</H2>"
(h2 307) = "<H2>307 Temporary Redirect</H2>"

Chapter 17: (www data mime-types) 39

17 (www data mime-types)

The (www data mime-types) module maintains an internal hash table mapping filename
extensions to one or more mime-types.

The exported procedures provide convenience abstractions over the underlying hash-
table manipulation operations, including extension and mime-type validation, init from a
file in a “standard” format (i.e., that of /etc/mime.types or ~/.mime.types), and support
for straightforward incremental init (aka merging). There are two predefined entries in the
hash table:

text => text/plain

html => text/html
To support merging, the put-F00 procedures both take a symbol resolve as the first arg,
which specifies how conflicts should be handled. This happens when the hash table already
contains an entry for extension and new-mime-type differs from old-mime-type.

error Throw an error with key mime-type-conflict, displaying a message describing
the extension, old-mime-type and new-mime-type.

prefix Make the mime-type of extension a list (unless already one), with new-mime-
type at the beginning.

suffix Make the mime-type of extension a list (unless already one), with new-mime-
type at the end.

stomp Use new-mime-type directly, discarding old-mime-type.

quail Discard new-mime-type, keeping old-mime-type.

For any other method, the operation throws an error, with key invalid-resolve.

Validation happens on all “put” operations. The extension must be a symbol, such as
txt. The mime-type must be a symbol with exactly one ¢/’ (slash) in its name, such as
text/plain, or a proper list of such symbols. The mime-type may also be #£, which means
to remove extension from the hash table.

If an entry does not validate, the operation throws an error, with key invalid-
extension or invalid-mime-type.

reset-mime-types! size [Procedure]
Clear all entries from the mime-types hash table, and prepare it for size (approxi-
mately) entries. This procedure must be called before any others in this module.

put-mime-types-from-file! resolve filename [Procedure]
Open filename and parse its contents as “mime-types” format. This line-oriented file
format is briefly described as follows:
e Blank lines and lines beginning with ‘#’ are ignored.
e Lines of the format mime-type (only one symbol) are ignored.
e Otherwise, the line is expected to be in the format mime-type extension
extension. .., that is, at least one extension must be present. Each extension
results in an entry in the hash table.

Put those those entries that specify an extension into the hash table, validating both
extension and mime-type first. resolve specifies how to resolve extension conflicts.

Chapter 17: (www data mime-types) 40

put-mime-types! resolve [extension]l mime-typel ...| [Procedure]
Put extensionl/mime-typel. .. into the hash table, validating both extension and
mime-type first. resolve specifies how to resolve extension conflicts.

If an extension is given but there is no mime-type (i.e., the list has an odd length),
throw an error with key missing-mime-type.

mime-types<-extension ext [Procedure]
Return the mime-type(s) associated with ext (a symbol or string), or #f if none are
found. Note that generally the value may be a single mime-type or a list of them.

select-extensions sel [Procedure]
Return a list of extensions in the hash table that match the sel criteria (a symbol). If
sel is #t, return all the extensions; if single, only those who have a single mime-type
associated; if multiple, only those who have more than one mime-type associated.

why select-extensions?

The last procedure is intended to ease non-generalizable merging, without providing too
much exposure to implementation internals. Suppose you want to maintain a local policy
of having only one mime-type associated per extension (to keep things simple). In that
case, after populating the hash, you can fix up those entries, like so:

(reset-mime-types! 491)

(put-mime-types-from-file! ’prefix "/etc/mime.types")

(define AMBIGUOUS (select-extensions ’multiple))

(use-modules (ice-9 format))
(define (display-ext ext)
(format #t "~7,0A “A7Y" ext (mime-types<-extension ext)))

(for-each display-ext AMBIGUOUS)

ent (chemical/x-ncbi-asnl-ascii chemical/x-pdb)

sdf (application/vnd.stardivision.math chemical/x-mdl-sdfile)
sh (application/x-sh text/x-sh)

csh (application/x-csh text/x-csh)

cpt (application/mac-compactpro image/x-corelphotopaint)
asn (chemical/x-ncbi-asnl chemical/x-ncbi-asnl-spec)

wrl (model/vrml x-world/x-vrml)

tcl (application/x-tcl text/x-tcl)

ra (audio/x-pn-realaudio audio/x-realaudio)

spl (application/futuresplash application/x-futuresplash)

m3u (audio/mpegurl audio/x-mpegurl)

;3 Local policy: For foo.wrl, we want the last variant,
;3 but everything else we’ll settle for the first.
(define ((keep! yes) ext)

(put-mime-types!

’stomp ext

(yes (mime-types<-extension ext))))

Chapter 17: (www data mime-types) 41

((keep! reverse) ’wrl)
(for-each (keep! car) AMBIGUOUS)

(for-each display-ext AMBIGUOUS)
asn chemical/x-ncbi-asnl
wrl x-world/x-vrml
tcl application/x-tcl
ra audio/x-pn-realaudio
spl application/futuresplash
m3u audio/mpegurl
ent chemical/x-ncbi-asnl-ascii
sdf application/vnd.stardivision.math
sh application/x-sh
csh application/x-csh
cpt application/mac-compactpro
Seasoned schemers will note that the same result could have been achieved if resolve were
allowed to be a general resolution procedure instead of simply a method specifier. Perhaps
that feature will be added in the future, and select-extensions replaced by map-mime-
types. We'll see. .

Appendix A: GNU Free Documentation License 42

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix A: GNU Free Documentation License 43

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: GNU Free Documentation License 44

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix A: GNU Free Documentation License 45

=

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: GNU Free Documentation License 46

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 47

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 48

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 49

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index

Index

#

#:bad-request-handler, make-big-dishing-loop

... 15
:body, send-request ...t 1
:concurrency, make-big-dishing-loop....... 15
:domain, rfc2109-set-cookie-string........ 28
rexpires, rfc2109-set-cookie-string....... 28
:explicit-return, make-big-dishing-loop.. 15
:flags, receive-response 2
:flags, send-requestia.. 1
:headers, send-request....................... 1
:intervene, receive-response................ 2
:log, make-big-dishing-loop................ 15

:loop-break-bool, make-big-dishing-loop.. 15
:method-handlers, make-big-dishing-loop.. 15
:need-headers, make-big-dishing-loop..... 15
:need-input-port, make-big-dishing-loop.. 15
:parent-finish, make-big-dishing-loop.... 15

H oH H H H HHFHHHEHHHHHHEHHEHEHHHEHHHE R HE R

:path, rfc2109-set-cookie-string.......... 28
:protocol-version, compose-response....... 31
:protocol-version, send-request 1
:queue-length, make-big-dishing-loop..... 15
:s2s, receive-request..................... 18
1s2s, receive-response. ..., 2
:secure, rfc2109-set-cookie-string........ 28
:socket-setup, make-big-dishing-loop..... 15
:socket-setup, named-socket................ 15
:status-box-size, make-big-dishing-loop.. 15
:style, COMPOSE—reSPONSEevvvuunnnn. 31
:style, make-big-dishing-loop 15
:style, receive-request 18
:unknown-http-method-handler,
make-big-dishing-loop 15
<
<—ctime......... .. i 14
<emtime........ ... 14
<-rfcli23-date...........ccoiiiiiiiiiiinn, 14
A
access-forbidden?-proc...................... 24
add-content.............oiiiiiiiiiiii.. 31, 32
add-direct-writer........................ 31, 33
add-formattedl 31, 32
add-header......... ..o, 31, 32
alist<-query.........................l 19

B

bad-request-handler 16

50
C
cgi-environment-manager..................... 26
CgiiCoOKie. ..t 11
cgi:cookie-nmames................. ... 9
cgil:cookiesooiiiiiiiiii i 11
cgi:form-data? ..., 9
cgiigetenv.. 9
cgiinit 9
Cgitmames............ ..ottt 9
Cgiinv-pairs....... ..o 11
cgitupload. ...t 11
cgi:uploads ... 10
cgi:value..........., 10
cgiivalues. ... 10
cleanup-filename............................. 21
COMPOSE-TESPONSE . ..o vvvieeeeieenennnnnnnn... 31
CONCUTTENCY « .\ vvveeiiieeeeaieee e ey 16
content-length.......... 33
CRLE .. 34
E
echo-upath................. ...l 15
entity-length........... il 31
explicit-return.............. 16
F
filename->content-type...................... 25
flat-length 34
format-utcsec............. i 14
fs . 34
H
hgf<-upath.............l 18
http-status-string 38
http:connect, 1
httpigeto 6
httpthead........... i 6
http:message-body................ooiiiiiiiii 5
http:message-header 5
http:message-headers 5
http:message-status-code..................... 5
http:message-status-ok?...................... 5
http:message-status-text..................... 5
http:message-version......................... 4
http:open......... i 1
http:post-form............. 5
http:requesto 4
http:status-ok?........... ..o, 5

Index

I

inhibit-content! 32, 33

10g. 17
log-http-response-proc...................... 36
loop-break-bool................l 17

M

make-big-dishing-loop....................... 15
method-handlers.............................. 16
mime-types<-extension....................... 40
modlisp-hgrok................l 37
modlisp-ish...........l 37
mouthpiece...........ol 32

N

named-soCket ...t 15
need-headersccoiiiiiiiiinnnnenn... 16
need-input-port...............l 16

P

parent-finish........... 17
parse-form............l 20
Protocol-version..........ccovviiiiiiiiiiiiinn 1
put-mime-types!....... i 40
put-mime-types-from-file! 39
Q

queue-lengthl 16

reach i 30
read-body....... ..o 19
read-first-line................ 19
read-headersol 19
receive-request.......... il 18
receive-response..............oiiiiiiiiiin... 2
rechunk-content 32, 33
Tequest ... 18
request-bodyl 18
request-headers..................l 18
request-method......................ll 18
request-protocol-version 18
request-upath........... 18
request?. 18
reset-mime-types!.......................LL 39

o1
rfcll23-date<—......... ...l 14
rfcll23-now ... 14
rfc2109-set-cookie-string.................. 28
rfc2965-parse-cookie-header-value......... 29
rfc2965-set-cookie2-tree 28
S
select-extensions.....................ou.nn 40
send! ... 32
SeNd-TepPly......ovuiii 33
send-request ... 1
set-protocol-version........................ 31
set-reply-status......................... 31, 32
set-reply-status:success 32
simple-parse-cookies........................ 28
skip-headers, 19
socket-setup............. ...l 16
status-box-size.............. .l 17
string<-headers................. ...l 35
string<-sockaddr................ 36
string<-tree i, 34
style ... 17
T
tree-flat-length!............................ 34
U
unknown-http-method-handler................ 17
upath->filename-proc..................o..... 24
url-coding:decode................... 13
url-coding:encode.................. 13
url:address.............ooiiiiiiiiii i 8
url:decode........... ... i 8
url:encode....... ..o 8
url:host....... i 7
Urlimake . ..ot e 7
url:make-ftp ... 7
url:make-http...........l 7
url:make-mailto............. ..., 7
UL :iparSeoiiiiiii i 7
url:path.......... 7
UTL:ipOTrt .o 7
url:scheme..............coiiiiiiiiiiinn, 7
Url:unknown.............oiiiiiiiiiiiii i 8
L08R) oF- T o T 7
UL iUSET e 7
\%%
walk-tree........ ..o i 34
WWWIZeT oottt 12
www:http-head-get............................ 12
www:set-protocol-handler! 12

	(www http)
	Dynamic Configuration
	High-Level HTTP Operation
	Low-Level HTTP Message Object Access
	Common Messages

	(www url)
	High-Level URL Object Conversion
	Low-Level URL Object Construction
	Low-Level URL Object Access
	Character Decoding/Encoding

	(www cgi)
	Initialization and Discovery
	Data Transfer In
	Uncollated Form Data

	(www main)
	(www url-coding)
	(www utcsec)
	(www server-utils big-dishing-loop)
	(www server-utils parse-request)
	(www server-utils form-2-form)
	(www server-utils filesystem)
	(www server-utils cgi-prep)
	(www server-utils cookies)
	(www server-utils answer)
	(www server-utils log)
	(www server-utils modlisp)
	(www data http-status)
	(www data mime-types)
	GNU Free Documentation License
	Index

