
C99 Parser User’s Guide
rough and incomplete

Matt Wette

Copyright c© 2017 – Matthew R. Wette.

Permissions regarding this document are provided in the “Copying” section.

The C99 parsers can use “include helpers”. This allows files to be

parsed without reading full include files. The user provides

typenames (types defined using typedef) and defines. The

syntax for the include-helper optional argument to the parsers is

1 Introduction

This is a manual for ...

Note on CPP replacement text: IIRC, C99 will remove comments from CPP

statements before processing. I preserve this and remove inside the

CPP parser.

1.1 Include Helpers

The C99 parsers can use “include helpers”. This allows files to be

parsed without reading full include files. The user provides

typenames (types defined using typedef) and defines. The

syntax for the include-helper optional argument to the parsers is

(define my-inc-helper

’(("foo.h" "foo_t" "ABC=123" "SUM(X,Y)=((X)+(Y))")

("bar.h" "bar_t" "DEF=456" "MAX(X,Y)=((X)>(Y)?(X):(Y))"))

The C99 parser and xparser modules export

c99-std-help.

1.2 Misc Items

The special symbol C99_ANY can be used for symbols which you

don’t want to define. In the parser will handle this as XXX

2 The Unit Parser

TALK ABOUT fixed-width-int-names

TALK ABOUT c99-std-help

TALK ABOUT stripdown

1



[Procedure]parse-c99 [#:cpp-defs def-a-list] [#:inc-dirs dir-list] [#:mode
(’code|’↓le)] [#:debug bool]

This needs to be explained in some detail.

Default mode is ’code.

(with-input-from-file "abc.c"

(parse-c #:cpp-defs ’("ABC=123"))

#:inc-dirs (append ’("./incs") c99-std-dict)

#:inc-help ’(("myinc.h" "foo_t" "bar_t"))

#:mode ’file))

2.0.1 Modes

There are several modes for parsing which affect the way the C

preprocessor statements are handled, and how the parse tree is

generated. The following list explains the intent behind these

parsing modes. Later we mention some fine points.

• code mode (the default)

In this mode, the proprocess works like a normal C compiler. The

preprocessor statements are evaluated as they are read and macros in

the code are expanded as they are read.

• decl mode

This mode is intended to be used for tools which want to

extract the declarations and definitions which are explicit in a file,

but allow access to declarations and definitions in included files.

• file mode

is intended to be used for tools which want to

transform C files somehow. For example, one could parse a file and

remove all comments. This will keep the CPP structure at the top

level. Preprocessor statements at the top level are not evaluted.

Note:

There is a change in versions starting with 0.77.0.

In these all defines required for evaluating CPP expressions in

if-then have to be resolved.

Options are as follows

[xdef?]name mode => #t|#f
Given string name and mode indicate whether the parser

should expand using CPP defines. The default is

(lambda(name mode) (eqv? mode ’code)).

2



3 Expression Parser

stuff

4 Copying

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 or

any later version published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A

copy of the license is included with the distribution as COPYING.DOC.

The Free Documentation License is included in the Guile Reference

Manual. It is included with the nyacc source as COPYING.DOC.

3


