
U61 - another block-based game

Christian Mauduit

v1.0.1

2

Contents

1 Introduction 9

1.1 U61 in a nutshell . 9

1.2 Basic rules . 9

1.3 Hey, but this is a Tetris clone! . 10

1.4 License . 10

1.5 Authors . 10

2 Installation 13

2.1 Download instructions . 13

2.2 Required tools and libraries . 13

2.3 Source install under GNU/Linux . 15

2.4 Static binary install under GNU/Linux . 15

2.5 RPM install under GNU/Linux . 16

2.6 Source install under Windows . 16

2.7 Binary install under Windows . 17

3 Quick start 19

3.1 Play alone . 19

3.2 Start local multiplayer game . 19

3.3 Start a network game . 20

3.4 Configure the game . 21

4 Troubleshooting 23

4.1 I can’t compile U61, help! . 23

4.2 When I run U61, I get protection faults 8-(. 23

5 Mailing lists 25

5.1 u61-user . 25

3

4 CONTENTS

6 Themes 27

6.1 About themes . 27

6.2 Building new themes . 29

7 Script tutorial 35

7.1 Disclaimer . 35

7.2 Step 1: create a script file . 35

7.3 Step 2: create an error . 36

7.4 Step 3: learn Lua basics . 36

7.5 Step 4: Try to understand the existing scripts . 38

7.6 Step 5: Toy arround . 39

7.7 To be continued... 39

8 Script basics 41

8.1 Introduction . 41

8.2 Different categories of functions . 41

8.3 Context handling . 42

8.4 Access rights . 42

8.5 Squares . 43

8.6 The block object . 43

8.7 The map object . 44

9 Script callbacks reference 45

9.1 Introduction . 45

9.2 user do curse . 45

9.3 user do shape . 47

9.4 user get curse name . 49

9.5 user get program . 49

9.6 user get version . 50

9.7 user land . 51

9.8 user match pattern . 52

9.9 user move down . 54

9.10 user move left . 55

9.11 user move right . 56

9.12 user new curse . 56

9.13 user new shape . 57

CONTENTS 5

9.14 user rotate left . 58

9.15 user rotate right . 59

9.16 user square blown up . 60

9.17 user time callback 1 . 62

9.18 user time callback 10 . 62

9.19 user time callback 100 . 63

9.20 user use antidote . 64

10 Script API reference 67

10.1 Introduction . 67

10.2 u61 add antidote . 67

10.3 u61 add item . 68

10.4 u61 add score . 69

10.5 u61 blow up square . 70

10.6 u61 cancel curse . 71

10.7 u61 center block . 71

10.8 u61 clear block . 72

10.9 u61 delete antidote . 73

10.10u61 get anticipation state . 74

10.11u61 get block x . 75

10.12u61 get block y . 75

10.13u61 get curse age . 75

10.14u61 get curse state . 76

10.15u61 get curse x . 77

10.16u61 get curse y . 78

10.17u61 get global . 78

10.18u61 get height . 79

10.19u61 get item color . 79

10.20u61 get item x . 80

10.21u61 get item y . 81

10.22u61 get nb antidotes . 81

10.23u61 get nb curses . 82

10.24u61 get nb items . 83

10.25u61 get oldest curse . 83

10.26u61 get preview state . 84

6 CONTENTS

10.27u61 get score . 85

10.28u61 get square color . 86

10.29u61 get time . 87

10.30u61 get width . 88

10.31u61 is block ok . 89

10.32u61 is curse available . 90

10.33u61 is square exploding . 91

10.34u61 register curse . 92

10.35u61 send curse . 93

10.36u61 set anticipation state . 94

10.37u61 set block x . 95

10.38u61 set block y . 95

10.39u61 set curse state . 95

10.40u61 set curse x . 96

10.41u61 set curse y . 97

10.42u61 set global . 97

10.43u61 set item color . 98

10.44u61 set item x . 99

10.45u61 set item y . 100

10.46u61 set preview state . 100

10.47u61 set score . 100

10.48u61 set square color . 101

11 Script library reference 103

11.1 Introduction . 103

11.2 Coding guidelines . 104

11.3 Modules . 105

11.4 Constants . 108

12 Known bugs 111

12.1 Major bugs . 111

12.2 Minor bugs . 111

13 Frequently Asked Questions 113

13.1 Why is the game called U61? . 113

13.2 Can I copy the game? . 113

CONTENTS 7

13.3 Why did you use ClanLib instead of SDL? . 113

13.4 Why did you code yet another Tetris(c) clone? . 114

14 Copying 115

8 CONTENTS

Chapter 1

Introduction

1.1 U61 in a nutshell

U61 is ”another block-based game”. Its main features are:

• Network play. Gameplay should be fast even with poor bandwidth. Local multiplayer game is
also available.

• Theme support. The graphics and sounds are fully configurable.

• Rules customization. As it uses Lua scripts, the game rules can be changed by any player, without
having to modify any complex C++ code.

• Cross-platform support. Since it is based on ClanLib, U61 runs on any platform supported by
ClanLib (GNU/Linux, Windows...).

1.2 Basic rules

The basic rules in U61 are:

• The player has a map, and blocks fall int it. Blocks are made of colored squares.

• The player may control the block as it falls, for instance rotate or translate it.

• When the block lands at the ”bottom” of the map, ie when it can not fall any more, it is merged
with the map.

• When a given pattern is matched in the map, for instance, squares of the same color, then these
squares explode and disappear.

• There’s always a special square on the map, and when this square explodes, a ”curse” is activated.
Curses can be anything from bonus to maledictions.

These rules are not very precise, and this is what makes U61 different from other block-based games: it
is possible to create one’s own rules and play with them. This is achieved by creating scripts, using the
Lua language.

9

10 CHAPTER 1. INTRODUCTION

1.3 Hey, but this is a Tetris clone!

No! No and No!

U61 is *not* a Tetris(c) clone. Its rules are much more general.

It’s true that when I first started the project (in 1999), its name was ”Tetr61s” and it was supposed to
look much like ”EITTris” with network support. Since then, I’ve had to deal with the so-called ”Tetris
Company”, and realized that cloning Tetris(c) is not possible anymore. So I decided to start a more
general project, which name is U61. Of course it’s possible to configure U61 so that it looks exaclty like
the genuine Tetris(c). But such a configuration is not provided in the standard distribution (inded the
”classic” set of rules includes many enhancements).

So Tetris(c) can in a way be considered as a subset of U61, but this does not mean at all that U61 is a
Tetris(c) clone.

But if you liked Tetris(c), Columns(c), or Puyo-Puyo(c), then you should like U61, so try it!

1.4 License

U61 is distributed under the GNU General Public License (GPL).

This means U61 is free software. Free as in speech. You can use it, modify it, and distribute it freely
as long as your modified product still respects the GPL. For more information about the GPL, see:

• The ”COPYING” file which should be present in every distribution of U61. It contains the GPL.

• http://www.gnu.org. The GNU (Gnu’s Not Unix) is the result of the work of the FSF (Free
Software Fundation). It is an attempt to make a complete and free UNIX like OS.

Please note that even if U61 can be considered as Open Source (http://www.opensource.org), I consider
it as Free Software. So if you ever mention U61, please refer to it as being Free Software, and not plain
Open Source.

1.5 Authors

As of today, I (Christian Mauduit) have written most of the code in U61. My coordinates are:

Christian Mauduit

E-mail: ufoot@ufoot.org
Web site: http://www.ufoot.org

GnuPG public key: http://www.ufoot.org/gnupg.pub
GnuPG fingerprint: 4762 1EBA 5FA3 E62F 299C B0BB DE3F 2BCD FD40 9E94

Snail mail: 8 Allee de la Fresnaie 95120 Ermont FRANCE

Feel free to contact me, I always appreciate feedback.

1.5. AUTHORS 11

An important contributer is Ursula Adler (U-Woman), who gracefully prepared the ”default” theme
for me. Please keep in mind that the graphics she prepared for me can be (and they are) released
under the GPL, but her graphics are usually protected by other license agreements. Check her web site
(http://absorbed.org) for more information. Please do not rip her graphics without asking.

Jimmy Kaplowitz wrote the ”unstable” curse, and is currently works on Debian support for U61 - which
is not an easy task since U61 has a bunch of dependencies 8-)

12 CHAPTER 1. INTRODUCTION

Chapter 2

Installation

2.1 Download instructions

U61 is freely available on the internet. As it is Free Software, you might also find it on a CD-Rom -
provided that someone has taken a time to prepare and burn/press such a CD 8-)

Wether you get U61 from a web or ftp site, from a CVS repository or if you find it on CD-Rom, you
should always get it under terms of the GNU General Public License. This is very important.

If you do not have U61 and want to get it, try the following URLs:

• http://www.ufoot.org/u61

• http://savannah.gnu.org/projects/u61

• http://u61.sunsite.dk

You may also get U61 from CVS, using the following commands:

cvs -d:pserver:anoncvs@subversions.gnu.org:/cvsroot/u61 login
cvs -z3 -d:pserver:anoncvs@subversions.gnu.org:/cvsroot/u61 co u61

When you are prompted with a password, just press ”ENTER”.

2.2 Required tools and libraries

2.2.1 Libraries

These libraries are required only if you want to compile and install U61 from the source. The GNU/Linux
and Windows binaries are statically linked against all these libs so that you don’t need to install them
to run the game.

• zlib 1.1.3 : http://www.info-zip.org/pub/infozip/zlib/ (a compression library)

• Hermes 1.3.2 : http://clanlib.org/ (provides conversion between various image formats)

13

14 CHAPTER 2. INSTALLATION

• Lua 4.0 : http://www.tecgraf.puc-rio.br/ (the scripting language used by U61)

• libMikMod 3.1.8 : http://mikmod.darkorb.net/ (allows the game to play .mod, .s3m, .xm, .it...
files)

• ClanLib 0.6.1 : http://clanlib.org/ (a general purpose game Library)‘

Note that with the latest releases of U61 you need Lua to be installed, but you do not need Tolua nor
clanLua. U61 uses Lua directly and does not use the ClanLib Lua bindings. This was not true for
U61-1.0.0 which required Tolua and clanLua.

Since ClanLib is rather modular, you’ll need to compile several modules, some of which are optional in
ClanLib but mandatory for U61. The required modules are:

• clanCore

• clanSignals

• clanApp

• clanDisplay

• clanSound

• clanNetwork

• clanMikMod

You might also compile clanLua, but U61 won’t use it...

2.2.2 Tools

These tools are required if you try to compile U61, if you got a binary distribution, you do not need
them.

• C++ compiler : gcc under GNU/Linux, Visual C++ 6.0 under Windows. Other compilers might
work as well, but you’ll probably need to edit the makefiles.

• Python 1.5.2 : http://www.python.org/ (needed to build the themes and compile the docs)

• LaTeX : http://www.latex-project.org/ (optional, needed to compile the docs in PostScript for-
mat)

• dvips : http://www.radicaleye.com/dvips.html (optional, needed to compile the docs in PostScript
format)

• PDFLaTeX : http://www.tug.org/applications/pdftex/ (optional, needed to compile the docs in
PDF format).

• makeinfo : http://www.gnu.org/software/texinfo/texinfo.html (optional, needed to compile the
docs in GNU Info format).

2.3. SOURCE INSTALL UNDER GNU/LINUX 15

2.3 Source install under GNU/Linux

In theory, the best way to install U61 is to install it from the sources. However, on my machine, it can
take me up to 3 hours to compile all the required libs and then the game. And keep in mind that I’m
quite used to compiling U61 8-) So it might be a wise choice to download the static binary, which is
about 1Mb bigger, but will probably save you more than 2 hours, unless you have already a working
ClanLib install and a fast CPU.

Here are some reasons you might wish to install U61 from the source:

• You want to use a specific ClanLib target, such as ggi for instance, since the static binary uses
the default X11 target.

• You want to install U61 in another location that /usr/local, because you are not root on your
machine or just don’t like /usr/local.

• You don’t have a Pentium or for some strange reason the static binary segfaults on your machine.

• You never install binaries on your computer. Just like me 8-)

The source tarball should be named:

u61-?.?.?.tar.gz

U61 uses GNU autoconf. The install scripts I’ve prepared aren’t perfect and do not check everything,
but most of the problems should be detected. Let’s say for instance that you are installing version 0.3.0.
Once you got u61-0.3.0.tar.gz, type:

gunzip u61-0.3.0.tar.gz
tar xf u61-0.3.0.tar
cd u61-0.3.0
./configure
make

Now log as root and type:

make install
exit
u61

And if everything is all right, you should see the game running...

2.4 Static binary install under GNU/Linux

Since release 0.4.1, a static binary for GNU/Linux is available. Since the executable is statically linked
against ClanLib and every library including the GNU libc, it should run on any GNU/Linux box which
has an up to date kernel and X-Server running. In fact, if this binary does not work, installing from the
source will probably not help much, but at least it might give you an idea of what’s going wrong.

Note that the files are named ”...-i386-binary.tar.gz” but there might be some problems running them
on a plain 80386 computer. In fact, they are ”i386” files as opposed to SPARC or ALPHA files, but

16 CHAPTER 2. INSTALLATION

they probably require a Pentium to run. If you want to run the game on a true 386, you can still try
and compile the source but the game will be very very sloooow.

The static binary archive should be named:

u61-?.?.?-i386-pc-linux-gnu.tgz

Let’s imagine you are installing version 1.0.1. Once you have downloaded the file, log as root and type:

tar xzfP u61-1.0.1-i386-pc-linux-gnu.tgz

Now log as a single user under X11 and type ”u61” in an X-Term, and the game should run.

Note the ”P” option in the tar command line, which tells tar to preserve full path names. This means
the files will be installed directly in /usr/local, that’s why you need to log as root. More precisely, files
are installed in the following directories:

• /usr/local/games : binary files

• /usr/local/bin : links to binary files

• /usr/local/share/games/u61 : theme and script files

• /usr/local/share/man/man6 : documentation as a man page

• /usr/local/share/info : documentation in GNU Info format

• /usr/local/share/doc/u61 : documentation in various formats

• /usr/local/share/pixmaps : icon for Gnome, KDE, WMaker...

2.5 RPM install under GNU/Linux

Since release 1.0.1, I provide RPMs for U61. They should work pretty much like any other RPM but
keep in mind that since U61 has a fair number of dependencies, installing the static binary as described
above might be even easier than installing all the RPMs for ClanLib, MikMod, Lua,... and all possibly
all the other packages required by U61.

Besides, I’m not an RPM expert, and the RPM I build have very basic and crude dependency informa-
tions, so they are far from being bug-free.

As a conclusion, use RPMs if you are familiar with them, otherwise, go for the static binary, it’s certainly
the easiest solution.

2.6 Source install under Windows

If you want to install U61 form the source under Windows, you’ll need Microsoft Visual C++ 6 and a
fair amount of free time 8-) The MSVC workspace is included in the GNU/Linux source tarball, so this
is what you need to do:

• Get the GNU/Linux source tarball, and unzip/untar it.

2.7. BINARY INSTALL UNDER WINDOWS 17

• Get a working ClanLib developper install. Try to compile the ClanLib examples first.

• Tweak the U61 project file so that it matches your personnal install. You’ll probably have to
change some include and/or library directories.

• Pray that MSVC does not segfault when compiling 8-)

• Create a directory structure which matches the one I use in the binary releases. The most impor-
tant point is that u61.exe must be able to find the theme and script files.

If this succeeds, you’ll probably end up with exactly the same content as the default binary release, so
at this time you might wonder: ”why the hell did I spent a whole afternoon doing this?” 8-}
BTW, there’s no easy way - at least I do not provide it - to compile the datafiles under Windows.
What I personnally do when I release windows binaries is that I import the compiled datafiles from my
GNU/Linux environment. As I almost never run Microsoft Windows, and since this poor system does
not have a decent batch support, I’m not ready to implement and maintain such a fonctionnality.

2.7 Binary install under Windows

All you have to do is unzip the file in a directory, for instance ”C:\Program Files\”.

WinZip - or whatever unzipper you use - should create a ”U61” subfolder, which contains everything,
including the ”U61.EXE” file you have to launch to play the game.

18 CHAPTER 2. INSTALLATION

Chapter 3

Quick start

3.1 Play alone

First you must run the game 8-) that’s to say:

• Double-click on u61.exe under windows.

• Type u61 in an Xterm under GNU/Linux.

Then the main menu should appear on the screen. To navigate in the menus, you’ll have to use:

• The keyboard arrows: up/down to change the selected menu item, and left/right to change some
settings such as sound volume.

• The ”ESC” key to go back to the previous menu. Also usefull to quit the game...

• The ”ENTER” key to validate your choice.

There’s no mouse support in U61 yet.

So to play alone, just select the ”Play alone” menu item by simply pressing ”ENTER”, and the game
starts. You can control the falling blocks with the keyboard arrows.

If you don’t like the key settings or their repeat rates, please keep in mind that U61 is highly customiz-
able. Indeed the ”Player options” -> ”Set up player n” -> ”Key settings” -> ”Advanced key settings”
enables you to set up different repeat rates for each key.

BTW, the ”Play alone” option is here only for training since playing U61 alone does not really make
any sense. You *need* to find other gamers to play with, for U61 has been designed to be a multiplayer
game, and you will completely miss the fun if you only play alone.

3.2 Start local multiplayer game

This is definitely more fun than playing alone! Up to 4 players can play on a single computer, however,
until I add joystick support to U61, I can’t really figure out how 4 players could fit comfortably - it’s
possible but not really easy - on a single 102 keys keyboard.

19

20 CHAPTER 3. QUICK START

So here’s what you’ll have to do:

• First you’ll have to set up keys for the different players. By default U61 maps the same keys for
all the players. This is because it’s impossible to set key options which will fit for every situation
(1,2,3 or 4 players). So you need to go to ”Player Options” -> ”Set up player n” -> ”Key settings”
menu, and set redefine the keys. To define a key, just select the action to bind with the up/down
arrows, and press ”ENTER”, then the key you want to use for this action.

• Once you have set up the keys, go to ”Player Options” -> ”Set active players” or ”Start new
game” -> ”Choose players” and there you can enable/disable players.

• Now go the ”Start new game” and select ”Local multiplayer game” and you’re ready to play.

Now whenever you see a weird black and white square, with a ”?” in it, just try to make it dissappear.
And see what your opponents think of it 8-) BTW, the game never ends, whenever a player looses, he
restarts with an empty field. This is what some would call a ”deathmatch” mode.

3.3 Start a network game

Probably the trickiest thing to do, but also one of the most powerfull features of U61. U61 offers much
more than a single one-to-one network game. Currently, up to 5 computers can be connected together,
and 2 players can play on each computer. So this makes a total of 10 simultaneous players...

U61 uses a client/server architecture, so a computer will act as a server, and then others will act as
clients and connect to it.

• To start the server, simply select ”Start new game” -> ”Create network game”.

• To start the client, select ”Start new game” -> ”Join network game”. By default, the client tries
to connect on ”127.0.0.1” which is the loopback network interface. You *need* to set the name
or the IP address of the server to the correct value (which is of course the address of your server).
To know what is the address of the server, type ”ipconfig” (under Windows) or ”ifconfig” (under
GNU/Linux, must be run as root) on the server. Once you have set up a correct IP address, (or
again the name of the server, but I personnally prefer using IP addresses directly) you can select
”Join”.

If everything is OK, the client player(s) should appear on the server. Oh, BTW, the client should better
hurry connecting to the server, for players on the server do not wait for the clients to start playing.
This is the kind of methods used in games like Quake by ID Software for instance.

By default, U61 will use port 8061 to communicate. Many firewalls won’t let IP packets pass them if
one uses this port. For instance, it might be impossible to play over the internet at work, if the only
connexion to the internet you have is an access with a proxy on port 80 - which is what many people
have. This is not U61’s fault anyway... You can also have problems if the server is started on a machine
which uses network address translation (NAT). If you encounter serious problems setting up an internet
game, my advice would be to first try to set up a network game on a LAN, and then when you know
how to make it work locally, try and launch it over the internet again.

3.4. CONFIGURE THE GAME 21

3.4 Configure the game

Well, I keep on saying that U61 is ”highly customizable”, so I guess some of you will be eager to know
how to do it 8-)

There are basically 4 ways to configure U61:

• Use the GUI/menus to change options such as key settings, sound volume...

• Write Lua scripts to create new sets of rules. This is definitely what makes U61 different from any
other block-based games.

• Create or tweak the existing themes to change the look and feel of the game.

• Modify the C++ core engine. You can do it since the game is GPL’ed. However, I do not
recommend it since this kind of practice is likely to introduce severe - and not easy to deal with -
compatibility issues.

How to change the theme and/or change the rules is described in other sections, so here I’ll only explain
how to change the options using the menus. Many settings are quite self-explanatory, so I do not detail
them, but some still require some explanations. Here’s a list of usefull options and what they do:

• ”Game options” -> ”Speed” -> ”Curse delay” : the time (in seconds) after which the special
”curse square” will automatically be moved.

• ”Game options” -> ”Graphic” -> ”Max frames per sec” : the max frame rate. Having a maximum
frame rate avoids U61 taking 100% of the CPU. Increase this value to have a smoother display on
high-end systems.

• ”Player options” -> ”Set active players” : here you’ll choose which players will be activated. Note
than in a network, game, only 2 players will be allowed per machine.

• ”Player options” -> ”Set up player n” -> ”Advanced key settings” -> ”[some key]delay” : this
is the time (in 1/100 sec) before the key starts repeating. This is a per-player settings so players
can have different key sensitivity even if they play at the same time on the same machine.

• ”Player options” -> ”Set up player n” -> ”Advanced key settings” -> ”[some key]repeat” : this
is the time (in 1/100 sec) used in repeating mode. It should be lower than the equivalent ”[some
key]repeat]” option.

• ”Player options” -> ”Set up player n” -> ”Anticipation mode” : allows the player to view where
his block will land. Also called ”ghost mode” in some other block-based games.

22 CHAPTER 3. QUICK START

Chapter 4

Troubleshooting

4.1 I can’t compile U61, help!

4.1.1 Problem

U61 configuration scripts are not perfect, and compilation might fail for various reasons since U61
depends on a fair amount off libraries, some of them not being - yet - available on every GNU/Linux
distribution (ClanLib, Hermes, Lua...).

4.1.2 Solution

• Read the INSTALL file in the root directory.

• Check that all the libs needed by U61 are correctly installed. For instance, Lua is quite tricky to
install since you have to run ld manually to create .so files.

• Try and install a binary release. The GNU/Linux static binary does not require any extra library
to run, so it might save you lots of time.

• If you’re still in trouble, you can still ask for help on the mailing-list.

4.2 When I run U61, I get protection faults 8-(

4.2.1 Problem

This often happens when data and/or configuration files are not installed correctly. It may also happen
if you have installed a new release of U61 over an older one.

4.2.2 Solution

Under GNU/Linux, remove the following files/directories:

23

24 CHAPTER 4. TROUBLESHOOTING

• ”/usr/local/share/u61” (or ”/usr/share/u61”). This is the directory where all the themes and
scripts are stored.

• ”̃/.u61rc”. This is a useless file used by previous releases of U61.

• ”̃/.u61”. This is the directory where the configuration file is stored. It can also contain custom
themes and scripts.

• ”/etc/clanlib.conf”. This is ClanLib’s configuration file, used mainly to choose which display
target should be used.

Once you have removed these, reinstall the game and and try and launch it again.

Chapter 5

Mailing lists

5.1 u61-user

5.1.1 Description

This list is for general discussions about U61. Here you can make suggestions, submit bug reports, ask
for help, find players, etc... Basically, any question or remark which concerns the game is welcomed on
this list.

5.1.2 Practical informations

You can’t send messages to the list without subscribing. The only reason for this is that it’s one of the
only way to block spam efficiently. However, I insist on the fact that anyone can subscribe, and the
subscription to the list is not moderated. So if you are a human being and not a stupid spam robot,
you’re welcome on the list 8-)

Here’s a list of usefull URLs:

• To (un)subscribe: http://mail.freesoftware.fsf.org/mailman/listinfo/u61-user

• To consult archives: http://mail.freesoftware.fsf.org/pipermail/u61-user/

• To post on the list: u61-user@mail.freesoftware.fsf.org

25

26 CHAPTER 5. MAILING LISTS

Chapter 6

Themes

6.1 About themes

6.1.1 What is a theme?

Think of themes as ”skins” which can be applied to the game. Technically a theme is a datafile or a
directory which contains:

• Graphics

• Sounds

• Musics

The scripts are *not* contained in the dafafile, so one can use any theme with any set set of rules, since
both are indenpendants.

The theme can be chosen in the ”Options/Theme” menu. Just move to the theme you want to use with
the keyboard arrows and press ENTER.

6.1.2 Copyright and artwork

It’s very difficult to find artwork which can be GPL’ed. Most of the free resources on the web are
available for free as long as one does not make money from them. However this kind of restriction is
not compatible with the GPL, so I have created almost everything myself, from scratch. This way *all*
the artwork in U61 is available under the terms of the GPL. This means that:

• All the graphics are GPL’ed. I have drawn most some of them myself, and the pictures come from
my personnal collection. Only some of the graphics in the default theme have been contributed
by Ursula Adler, and she agreed that I placed her contributed work under the terms of the GPL.

• All the sounds are GPL’ed. Some of them I found on a CD with domain public sounds, and the
others I have recorded myself, with a microphone.

27

28 CHAPTER 6. THEMES

• All the musics are GPL’ed. I insist on this point since copyrights on .mod, .it or .xm files are
not always very clear. So these mods are not public domain. They are placed under the terms of
the GNU General Public License. The samples are also GPL’ed. I have recorded the drums years
ago with a dusty SB16 and a friend, and the brass samples where recorded at home with my own
instruments and my good old microphone 8-)

If you want to contribute to U61 by creating new themes, keep in mind that your work must be
available under the terms of the GPL. This means that I can not accept themes which use graphics from
a proprietary game for instance. So if you want to make a ”Diablo 2 theme” you can do it but I won’t
distribute - and you should not distribute it either since it would be a plain GPL violation, besides
being also a copyright infringement of Blizzard’s game.

6.1.3 Difference between .dat and .scr themes

As U61 is based on ClanLib, it is able to read the datafiles in 2 different ways:

• .dat files are WAD-like files. This mean all the resources are stored in a single opaque .dat file. I
used this format to ship the default theme since this format is less problem-prone than .scr files.
Basically, if you have a successfully compiled .dat file, there are few chances that the games fails
when it runs, since everything has been checked before. All the resources which are required to
build the default.dat file are of course available in the source package.

• .scr files are plain text files which contain links to the resources files. In U61, a ”mytheme.scr”
file will basically contain pointers to graphics, sounds and music files located in the ”mytheme”
directory. You just have to modify the .pcx, .wav or .xm files - which are ”standard” file formats.
The only drawback of this system is that you might end up in breaking up the theme and in this
case the game simply won’t run.

By default the makefiles in source package produce both .dat and .scr versions of all the available themes.
Then the install scripts chose to install the default theme as a .dat file and other themes as .scr files,
but you are free to change this behavior.

6.1.4 Directory issues

U61 reads datafiles from 2 different directories:

• The builtin theme directory. It should be something like ”/usr/local/share/u61/theme” under
GNU/Linux or ”C:\Program Files\U61\data\builtin\theme” under Windows. This is where all
the files coming with U61 are installed. Even if it’s OK to modify these files directly, you should
not modify them directly, since after you won’t be able to get the genuine themes back easily.

• The user theme directory. It should be something like ”̃/.u61/theme” under GNU/Linux or
”C:\Program Files\U61\data\user\theme” under Windows. These directories are empty when
you first install the game. This is where you should put your home-made themes, so that there’s
no conflict with the builtin themes which are originaly shipped with the game.

6.2. BUILDING NEW THEMES 29

6.2 Building new themes

6.2.1 About the makefiles

To build .dat and .scr themes, I use an IMHO quite complex makefile system, involving Python scripts
which generate makfiles automatically. You might wonder why I did that since with ClanLib’s support
of .scr files I could have simply copied the source directory into the target install directory? Well, here’s
the answer:

• On one hand, I like the idea, when I create themes, to share files between themes. For instance
the default and the fanfare themes use the same sprites for squares. It would be a nonsense to
duplicate all those files in developpement. If I change these sprites, I do not want to make the
changes twice.

• On the other hand, when the themes are installed. People might to add, delete, and share their
installed themes if they have tweaked them. And in this case, if themes have been installed as
.scr files, you never know what to delete and/or change. For instance, should you want to delete
the fanfare theme, you would have to look at every file it uses, and check that it is not used by
another theme. And if you imported a friend’s theme which uses patched versions of the genuine
graphics, then all your already installed themes would be affected.

Therefore, the makefiles build .scr files from .theme files. The .theme file is the developper file, with
references to files in the square or sound directories, and the .scr file is the final file which will be read
by U61, and it contains references to files in a directory which is automatically created and contains a
copy of all the required files. This way, each theme is stored in a independant directory.

However, if you want to tweak an existing theme, you can simply take the installed .scr and associated
directory and start tweaking theme right away without bothering with all this makefile stuff. But keep
in mind that if you want your theme to become part of the ”official” U61 distribution, creating it with
the same makefile system I used will make things much easier in the long run.

6.2.2 Getting started

Let’s say you want to build a new ”foo2” theme from an existing ”foo” theme. What you should first to
is open the foo.scr file with a text editor, and look what’s in it. It is a plain and quite self-explanatory
file, so it should not take ages to understand its global structure.

So just copy the existirg foo.scr theme and its associated directory from the builtin theme directory
(”/usr/local/share/u61/theme” under GNU/Linux or ”C:\Program Files\U61\data\builtin\theme” un-
der Windows) to the user theme directory (”̃/.u61/theme” under GNU/Linux or ”C:\Program Files\U61\data\user\theme”
under Windows) and when you run U61, you should see the theme foo appear twice in the list of available
themes. One is the builtin theme and one is the theme you just copied.

Rename the foo.scr file you have copied to foo2.scr, (only the foo.scr should be renamed for now but
not the foo directory, since this freshly copied foo.scr file still has references to a directory which name
is foo). Now if you restart u61, foo (the builtin theme) should be available along with foo2 (the one you
have just copied/renamed).

You are now ready to tweak foo2.

30 CHAPTER 6. THEMES

6.2.3 Naming conventions

All the sections follow some basic naming conventions:

• a ” w” suffix indicates that the value is a width

• a ” h” suffix indicates that the value is a height

• a ” x” suffix indicates that the value is an x coordinate. 0 is associated to the left of the screen.

• a ” y” suffix indicates that the value is an y coordinate. 0 is associated to the top of the screen.

• an ”offset ” prefix indicates that the value is an offset which will be added to the top-left corner
of the zone the item is associated to.

• a ” big” suffix indicates that the value is used when drawing a map for a local player. Usually
twice bigger than its small equivalent.

• a small suffix indicates that the value is used when drawing a map for a remote player. Usually
twice smaller than its big equivalent.

6.2.4 The property section

This section contains integer values which are used to define the size of the theme (640x480, 800x600...)
and the position of various items on the screen. All dimensions are given in pixels.

Here is the list of all the values:

• screen w, screen h: the size of the window in windowed mode, or the resolution in full-screen
mode.

• player w, player h: the size of the zone which is associated to a player. This includes the map and
the info zone. Those zones will be tiled and/or centered automatically.

• offset map x big, offset map y big, offset map x small, offset map y small: the position of the
map background bitmap. This bitmap is the main background image a player sees on his playfield.
The offset is added to the position of the player’s zone, which is calculated at run-time.

• offset info x big, offset info y big, offset info x small, offset info y small: the position of the info
background bitmap. This bitmap is the background image of the info zone, where score and
other information are displayed. The offset is added to the position of the player’s zone, which is
calculated at run-time.

• offset squares x big, offset squares y big, offset squares x small, offset squares y small: the posi-
tion of the top-left square. Indeed, the background bitmap might be bigger than the actual
playfield, so ususally this value is the size of the ”border”. The offset is added to the position of
the map background image, which is not necessary the same the the global position of the player.

• offset name x big, offset name y big, offset name x small, offset name y small: where the name of
the player should be displayed. The offset is added to the position of the info background image.

• offset score x big, offset score y big, offset score x small, offset score y small: where the score of
the player should be displayed. The offset is added to the position of the info background image.

6.2. BUILDING NEW THEMES 31

• offset target x big, offset target y big, offset target x small, offset target y small: where the name
of the target should be displayed. The target is the player’s next victim, who will receive a curse
whenever the player gets an occasion to send one. The offset is added to the position of the info
background image.

• offset preview x big, offset preview y big, offset preview x small, offset preview y small: where
the next block preview should be displayed. The offset is added to the position of the info
background image.

• offset curses x big, offset curses y big, offset curses x small, offset curses y small: where the list
of curses which affect the player should be displayed. The offset is added to the position of the
info background image.

• offset antidotes x big, offset antidotes y big, offset antidotes x small, offset antidotes y small: where
the number of available antidotes should be displayed. The offset is added to the position of the
info background image.

6.2.5 The font section

This section contains all the fonts used in the game, plus some special fonts used to display curses and
antidotes.

There two kinds of fonts in ClanLib:

• The first kind is the one I use but it’s deprecated. You have to make a 256 color indexed bitmap,
and tell which color is the transparent color. One also needs to draw rectangles with colors 253,254
and 255 to tell the font engine where the letters are. Check the existing fonts in U61 to have more
information on how to make this kind of fonts.

• Alpha based font can be built from .tga files. Check out ClanLib’s doc to know more about this
kind of fonts.

Here is the list of all the values:

• menu: font used to display the menus. Must contain all the common ascii characters.

• info big, info small: font used to display the informations in the info zone, such as scores and
players names.

• symbol big, sumbol small: special font used to display the curses and antidotes. The ”-” character
represents the negative curses, the ”+” character represents the positive curses, and the ”a”
character represents the antidotes.

6.2.6 The sound section

This section contains all the sounds, except the musics.

Here is the list of all the values:

• game start: played when the program is launched.

• menu move: played when the players moves up or down in the menus.

32 CHAPTER 6. THEMES

• menu move: played when the players moves validates a choice in the menus.

• block touch: played when a block lands at the bottom of the map.

• block pattern: played when the player completes a pattern, for instance when a line disappears.

• player start: played when a remote player joins the game.

• curse received: played when a player receives a curse.

• player loose: played when a player looses and restarts with a blank map.

6.2.7 The music section

This section contains all the musics, in .mod, .xm and in a more general manner in any format supported
by MikMod.

Here is the list of all the values:

• number: the number of mods available. It’s OK to make a theme with no music at all, in this
case number must be 0.

• mod n: the actual module files. In ”mod n” the ”n” should be replaced by an index number,
ranging from 0 to (the number of mods available)-1.

6.2.8 The square section

This section contains all the sprites used for the squares.

You need to provide 16 set of sprites, because there are 2 sizes (small and big) and 8 colors. For instance
”small 3” is the set of sprites associated to color 3 used to dislay the squares for network players.

The bitmap files must contain 16 different pictures for each sprite, which will be used to animate the
sprite. If you don’t want to use the square animation, simply provide a sprite with 16 times the same
picture.

Please check ClanLib’s documentation to know more about sprites. IMHO a good way to understand
how it works is to try and understand how the builtin squares in U61 have been created.

Here is the list of all the values:

• big n, small n: the standard squares.

• big curse, small curse: the special square which blinks and indicates where the current curse square
is. BTW, the sprite does not need to handle the blinking, simply draw a standard 16 step sprite,
and the game engine will handle the blink automatically.

• big explosion, small explosion: the sprite used to represent the explosion of a square before it
disappears.

6.2. BUILDING NEW THEMES 33

6.2.9 The map section

This section contains all the background pictures used for the player’s playfield.

Here is the list of all the values:

• number: the number of maps available. There must be at least one map so number can not be 0.

• big n, small n: the maps, where one should be able to put 10x25 squares. In ”big n” and ”small n”
the ”n” should be replaced by an index number, ranging from 0 to (the number of maps available)-
1.

6.2.10 The back section

This section contains general background pictures.

Here is the list of all the values:

• main: the main background image. The one which is displayed when one launches the game, and
is used as a background in any situtation.

• shade: this bitmap is blitted on the screen in the in-game menus. By default I use a plain bitmap
which makes everything look darker.

6.2.11 The info section

This section contains the background pictures used for the ”info” zone, where the score and other
parameters are displayed.

Here is the list of all the values:

• big, small: the picture used to fill the ”info” zone.

34 CHAPTER 6. THEMES

Chapter 7

Script tutorial

7.1 Disclaimer

Before you start, please note that this document is:

• *not* a Lua tutorial (Lua is the language use for scripting in U61). Of course at the end of this
document I hope you’ll be able to do some basic Lua scripting since Lua is quite quick to learn,
but if you want to do advanced Lua coding, go and check the official sources. I’m myself not a
great Lua programmer so I won’t be able to help you a lot anyway.

• *not* a complete reference of what is possible to do with U61. It only shows how to get started
with script writing, but if you really want to do complicated things, please read the rest of this
site.

However, it should help you write your first script lines, and I have good reasons to think these are the
hardest to code.

You do not need any special programming skills before reading this document. If you are curious and
wish to learn how to toy with u61 it should be enough, provided that you know at least how to move,
copy and edit files on your system. Of course it makes things easier to know about programming, but
honestly Lua is not a difficult language to start with.

7.2 Step 1: create a script file

Well, let’s not reinvent the wheel for instance, we’ll just copy an existing file. Writing a complete file
from scratch might indeed be too hard for a start.

If you got an ”official” U61 package (from http://www.ufoot.org for instance) you already have some
scripts that came with the game. By the time I write this document, only the UNIX platform is
supported, so the script files should be in ”/usr/share/script/u61” or ”/usr/local/share/script/u61” or
in the directory where you installed U61.

Now copy ”/usr/local/share/u61/script/classic.lua” into ”̃/.u61/script/test.lua”.

If now you launch U61, and go to ”Game options / Rules” you should see ”test” appear in the list, use

35

36 CHAPTER 7. SCRIPT TUTORIAL

the arrows to move the selection on it, and the start a new game. You should have the impression to
play with the ”classic” rules, but in fact you are using the ”test.lua” script.

7.3 Step 2: create an error

OK, now scripting allows lots of liberty in programming. One of the basic consequences for U61 is that
you can code almost anything in a script, you are pretty sure you won’t get a protection fault. In fact
the worst thing that can happen (and it does happen) is an infinite loop. The result is that the game
hangs and you have to kill it.

So what I propose is to deliberately create an error in the script and see what happens. This will help
you deal with errors later. So just edit your brand new test.lua script file with your favorite editor (vim
and GNU Emacs seem to work good but I would never mean to influence you in the choice of the editor)
and go to, say line 93. There you just add the following text:

\""56zboub!

Now relaunch U61, which should have kept test.lua as your default script, and you should get nothing
on the player(s) map(s) but instead a message on the console (provided that you have launched U61
from a terminal) that says:

lua error: unexpected token;
last token read: ‘\’ at line 93 in file ‘/home/ufoot/.u61/test.lua’

Lua error reading script, code is 1.

And this is it. You have the line number of the error and a short description of it. This should help
debugging.

It is not necessary to quit and re-run completely u61 before trying out a new script. Indeed the script
is reloaded from the disk each time you start a new game (with ”Quick start” for instance). So all you
need to do is:

• Launch U61

• Select your script with ”Game options / Rules”

• Start a game with ”Quick start”, view what happens.

• Edit your file, save it.

• Re-start the game with ”Escape / Stop this game / Quick start” and view how your modifications
influence the gameplay.

As a start, just remove the faulty text I just told you to add from the script, same it and re-start a new
game without quitting U61. The error should disappear.

7.4 Step 3: learn Lua basics

As I said before, this document is not a Lua reference, and it won’t replace the reading of the official
manual, which is available on this site anyway. Still, you do not need to be a Lua wizzard to tweak

7.4. STEP 3: LEARN LUA BASICS 37

U61’s scripts, as I’m not myself a very bright Lua programmer. So this short passage is just to give you
a quick start.

In U61, I essentially use Lua functions, there are other aspects of Lua programming than functions, but
I think functions are easy to understand, so I use them. To declare a function, do like this:

function my_function(par1,par2)
...

end

As you see, it’s easy to declare a function, you might use this function elsewhere by calling:

my_function("hello","world")

Within a function, you can declare local values. Local values have a scope which is limited to the
function where they are declared. Any function may return a value, here’s an example:

function calculate(a,b)
local temp
temp=a+b
return temp

end

As you may have guessed, this function performs an addition, you can call:

c=calculate(1,2)

and the value of ”c” will be 3.

Lua has some common controls like ”if...then” or ”while...do”. Here is a short example:

if val==0 then
result="zero"

elseif val<0 then
result="negative"

else
result="positive"

end

And another one:

while i>0 do
result=result*2
i=i-1

end

To compare numeric values, you can use the operators:

• == (equals)

• =̃ (different)

38 CHAPTER 7. SCRIPT TUTORIAL

• >(greater)

• <(lower)

• >= (greater or equal)

• <= (lower or equal)

Now if you have already programmed in another language like C, Pascal or Basic you know that almost
as much as I do about Lua. I can tell you it’s enough to start hacking.

7.5 Step 4: Try to understand the existing scripts

OK, now we know how to modify a script randomly and generate errors. Great, but you might want to
do more than that! Let’s start by a - very - short analysys of our test.lua script file.

”user rotate left” is called when the rotate left key is pressed. In U61 0.2.2 the code for user rotate left
for the classic.lua script is:

function user_rotate_left()
rotate_block_left()

end

This means the action to perform when ”user rotate left” is called is to call ”rotate block left”. So what’s
the difference between ”user rotate left” and ”rotate block left”? Well, they do exactly the same but
”user rotate left” is a reserved name, this function being what I call a ”user callback”, since it’s called
by the C++ engine and it’s the responsibility of the scripter to code it correctly. ”rotate block left” is
totally unknown from the C++ engine, it’s just a function I created because I found it convenient to
have a function that rotates a block already coded and usable elsewhere in the script. If we look at the
code of ”rotate block left”, we find:

function rotate_block_left()
local x
local y
local i

i = u61_get_nb_items()-1
while i>=0 do

x = u61_get_item_x(i)
y = u61_get_item_y(i)
x,y = y,-x
u61_set_item_x(i,x)
u61_set_item_y(i,y)
i = i-1

end
end

Well, we won’t detail the way it works, but we’ll still notice that it uses the functions with a name like
”u61 fonction name”. These functions belong to what I call the ”system api”. It’s a set of functions
which allow the user to query and modify U61’s world. For instance ”u61 get nb items” returns the size

7.6. STEP 5: TOY ARROUND 39

of the current block, which with the classic rules is generally 4. But beware, it could be more if you had
a nasty curse, and in a general manner, it’s good to write scripts that are usable in various situations.

7.6 Step 5: Toy arround

Now, we’ll as a first example change our ”test.lua” file so that when the user rotates a block, the block
goes down of one square. This will forbid abusive rotation of the block and make the game harder.

Just edit test.lua and find the code for ”user rotate left” and ”user rotate right”. It should look like:

function user_rotate_left()
rotate_block_left()

end

function user_rotate_right()
rotate_block_right()

end

Just replace this by:

function user_rotate_left()
rotate_block_left()
u61_set_block_y(u61_get_block_y()+1)

end

function user_rotate_right()
rotate_block_right()
translate_block_y(1)

end

And it should work! You’ll notice that the 2 functions are coded differently. With ”user rotate left”
I used the U61 system API directly, whereas with ”user rotate right” I used an Lua function which
encapsulates the calls to the system API. I personnally find it a good idea to make very small functions
but you are free to do whatever you want. But I believe some functions such as the user callbacks should
be as small as possible, for in the long run it should make the sharing and merging of script files easier.

7.7 To be continued...

Well, that’s all for now, I hope to enrich this document soon.

40 CHAPTER 7. SCRIPT TUTORIAL

Chapter 8

Script basics

8.1 Introduction

This section describes how scripting works within U61. Reading this should help you a lot writing new
scripts for U61. However, it assumes that you have some basic programming skills. Anyways, if you are
not a programmer yourself, you might find out that hacking U61 scripts is not that hard, by having a
look on the script tutorial I made.

8.2 Different categories of functions

8.2.1 Overview

When scripting within U61, one has to use functions. There’s not really any object-oriented approach
in the scripts I wrote and I do not really see where such a thing as OO whould make things easier for
beginners.

So you’ll basically have to use functions, functions and functions, divided in 3 categories:

8.2.2 User callbacks

These functions *must* be defined in every script you make. They are called by the C++ engine. A
typical user callback is ”user block shape” which is the function that defines the shape of blocks. It
receives an integer and must create the block associated to this code. You may change this functions
(it’s even recommended!) but keep in mind that they should always do something in the same spirit
than the genuine ones. I mean that a ”user block move left” function should not try to change the map
radically. However, there are protections to avoid this, as we’ll see later, but still keep in mind that
those functions should do something that corresponds in some way to the name they have. For instance,
replacing ”user block rotate left” by a function that changes a block in some weird way is ok, as long
as the game stays playable.

41

42 CHAPTER 8. SCRIPT BASICS

8.2.3 System API

These functions are available in every script you write. In fact, it’s just like I added a library to standard
lua fonctions, and you can use it. A typical system api function is ”u61 map add score” which takes
an integer and adds it to the current score. You can not modify these functions, as they are coded in
C++. They are the only tool you have to read or modify a player’s parameters.

8.2.4 User library

User library. Well, of course you can create your own set of Lua functions. In fact, those functions
will be called within user callbacks and will contain calls to system API functions or to other user
functions which form what I call the user library. For instance, there is a ”column down” function in
the classic.lua script, which moves a whole column down by one square. This function might interest
you in another script, so it can be viewed as belonging to a library but it’s very different from a system
API function since you can modify it.

8.3 Context handling

When a user callback function is called, it’s executed within a context which is associated to a player.
You will never find in a system API function a parameter like ’player id’. Indeed all script functions
in U61 are designed to operate on one single player. You can safely assume that there won’t be any
unwanted interaction between players.

But there’s a big pitfall (which I believe is not so easy to avoid that it seems) : you can *not* store
anything in a global lua value. Well of course you can do it within a function - but in this case what
is the advantage over a local value??? - but you can be 100% sure that what you stored there won’t
be available next time the function is called. Worse, it could be overwritten by some other call to the
same function but for another player. Basically, using global values to communicate between different
players is a *very* bad idea and is bound to fail.

However, I tried to provide a decent API to store persistent values. So you may use ”u61 map set global”
or ”u61 map get global” to store and retrieve integers. Everything you store in there will be backuped
and restored each time a user callback is called. This way you may for instance put here a flag which
means ”this player has the szwing-szwang-bouloulou malediction on him and he can not move his blocks
whenever they are yellow or pink”. You could also store a custom counter and when this counter reaches
0 you just mess up everything in the map. So these things are possible but beware, you may never store
anything as a global lua value, for this would mean your script would not fit for network play, which is
in my opinion very sad.

8.4 Access rights

Now, these functions may read or write info on 2 different ”objects”, which are the map and the block,
these objects are described later.

And sometimes, U61 needs some functions *not* to modify one of these objects, are not to be able to
get informations about it. This is very important. For instance, the ”user block move right” function
must not change the map. But you might think: ”why should one impose such a limitation?”, for I
have, indeed, decided that it would be so.

8.5. SQUARES 43

In fact, the issue is about performance. Indeed the ”move ...” functions may be called very often, and
they need to backup everything they might possibly change, because this way if the move is not possible
we can perform a sort of ”rollback”. So authorizing those functions to modify the map would mean a
backup of the map each time you move a square, and I decided that this could be too time consumming
for a simple basic move.

So every user callback and every system API function has rights associated to it. This rights are:

• block read

• block write

• map read

• map write

Basically, when a user callback is called, all the functions it calls inherits the rights it has. For instance,
within ”user block rotate right” which grants the ”block read” and ”block write” rights, you can call
”u61 block get x” which requires the right ”block read”, but you can not call ”u61 map set score” which
requires the ”map write” right. That’s all.

8.5 Squares

As U61 is a block-based game, everything is about squares. The next section describes the block and
map objects, which are both made out of squares: the block is a set of squares associated to positions
and a map is an array of squares.

The most important attribute of a square is its color. Today, there are 8 square colors. Some might
think this is a limitation but I had to choose a number and keep myself to it since it makes it really
easier to make game logic and graphics work well together. Basically it’s possible to make U61 work
with 64 colors, but you’ll need to draw a lot of new squares and hack the C++ code. Wether it’s worth
it is up to you, in any case the code is GPL’ed so you can modify it if you wish, but I think 8 colors is
enough to have fun and is quick to visualize.

When I say ”color” it does not mean there are blue, yellow, red squares. You might want to draw different
squares which do not look the same but have the same color. Color is just a way to differenciate squares
from a logical point, wether the players sees different colors depends on the artist.

Very important: the convetion in U61 is to assume that when the color of a square is negative, the
square is in an ”empty” or ”transparent” state. For instance, if you want to define a tetramino you
need to define a block with 4 squares with colors greater than 0, and 96 squares with a color of -1. In
the same spirit, a map is by default initialized with squares having color -1.

8.6 The block object

Well, I said there was no OO programming and I talk about a ”block object”. OK, let’s be clear, the
”block object” is not an object from the programming point of view, but it’s true that from a theorical
point it’s an object with fields (stored by the C++ engine) and methods (prefixed by ”u61 block ”).
However, things such as inheritance have no sense in U61’s context, so forget about OO programming
and just think about the block object as some data you can access trough a pre-defined API.

44 CHAPTER 8. SCRIPT BASICS

So this block object represents the ”falling block”. It is basically composed of squares. It can have from
1 to 100 squares, and can be of any shape. Each square has the following parameters:

• x : the x coordinate. The greater it is the more the square will be on the right.

• y : the y coordinate. The greater it is the more the sqare will be close to the bottom of the map.

• color : the color of the square. The color can range from 0 to 7. A negative value indicates that
the square is disactivated.

The block also has its own x and y parameters. These parameters tell in fact the global position of the
square within the map. Concretely, when a block square is drawn on the map, the coordinates used
are (block x+square x,block y+square y). So for instance, to move a whole block down, one just has to
increase its y value.

The block object also has some interesting functions such as ”block center”, please check the script API
to get a complete description of them.

8.7 The map object

The map object contains... everything but the block! Indeed, you need write access to the map object
to send curses, to update your curse, and of course to modify the map.

One could categoruze the map attributes and methods like this:

• Square related functions, such as ”u61 set square color”. These are probably the most usefull
functions since they allow you to change the aspect of the map. Basically, the map can be
considered as an array of 10x25 squares, each square having a color (0-7 are regular colors and -1
means there’s no square at all).

• Curse related functions, such as ”u61 get curse y”. With these you can move the special block
associated to the next player’s curse, you can send a curse to another player, or use an antidote.

• Global parameters handling. Score for instance can be accessed ”u61 add score”.

• Custom values storage. If you write advanced scripts, you might wish to store some data and
get it back later in another function. This is *not* possible with global Lua values, because of
multiplayer issues, but some functions such as ”u61 set global” make it possible to store global
numbers.

Chapter 9

Script callbacks reference

9.1 Introduction

User callbacks are lua functions which are called from the C++ engine. U61 requires all these functions
to be declared in a script, even if they do nothing. In these user callbacks, you may use functions from
the U61 system API, but be carefull, you can not use any system API functions in any user callback,
since there are some access right constraints.

9.2 user do curse

9.2.1 Declaration

user_do_curse(num,sent)

• Arguments: a code previously returned by ”user new curse”, a boolean saying if the curse is local
or comes from another player.

• Return values: none

• Rights: block read, block write, map read, map write

9.2.2 Description

This function can be called int 2 cases:

• When a square explosion has ended, and this square’s location was the location of the current
curse. If you are playing with the default theme, it means that the square with the blinking ”?”
has exploded.

• When another player has called the ”u61 send curse” function, and the current player was his
default victim.

Basically, one could separate the curses into 2 categories:

45

46 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

• Those who affect the player which launches them. They usually have a positive effect. For instance,
it can be a goodie which slows your blocks down so it’s easier for you to play. These curses are
executed directly by ”user do curse”, the parameter ”sent” being set to 0 (false).

• Those who affect the launcher’s victim. They usually have a negative effect. For instance, it can
be a nasty curse which speeds up the blocks, so that they become uncontrollable. These curses
are also executed by ”user do curse” (with ”sent” set to 0), but one has to call ”u61 send curse”
manually to send the curse to the other player (the victim). This other player will receive the
curse, but this time the ”sent” parameter will be 1 (true). So the ”sent” parameter is fundamental
since it allows you to identify if the curse is to be sent to the victim or to be executed.

You might wonder why I did not simply create 2 categories of curses, and let the C++ engine handle all
this ”send to victim” business. Well, I liked the idea of letting the scripter control what’s happening.
For instance, you may create a special curse which sends severa curses (all the ones you currently have
for instance) to your victim. Basically, what I described with the ”sent” parameter determining if one
has to send the curse or not is only a suggestion. You may use the system the way you want, for instance,
it’s possible to create a special curse which forces your victim to send a curse to its own victim...

Of course one of the big strenghs of U61 is that the ”user do curse” and ”u61 send curse” work pretty
well, even in a slow networked environment - at least I hope so 8-) -.

9.2.3 Example

The following example is a very simplified version of ”user do curse”. This function can indeed grow
very big and it’s a wise decision to make it call smaller functions. But still this purpose of this example
is to remain simple. It has the 2 main types of curses:

• ”ID CURSE PLUS” is a goodie which is executed locally and increases the player’s score.

• ”ID CURSE MINUS” is a nasty curse which reduces the score of the player’s victim.

ID_CURSE_PLUS=3
ID_CURSE_MINUS=4

function user_do_curse(num,sent)
if (num==ID_CURSE_MINUS) then

if (sent==0) then
u61_send_curse(num)

else
u61_add_score(-1000)

end
elseif (num==ID_CURSE_PLUS) then

u61_add_score(1000)
end

end

9.3. USER DO SHAPE 47

9.3 user do shape

9.3.1 Declaration

user_do_shape(num)

• Arguments: a number previously given by user new shape

• Return values: none

• Rights: block read, block write, map read

9.3.2 Description

This function shapes the block before it appears on the screen. You should not include any random
behavior in this function. In fact it is a bad idea to include random behaviors in U61 in general, but I
mention it here for it might be very tempting to ignore the ”num” parameter and do a random number
generator oneself. But this is bound to fail in a network game for you can not garantee the remote
players will see the right shape. In fact the ”num” parameter ”is” what U61 sents to other players, so
it’s only by using it that you can garantee game consistency.

A typical ”user do shape” only needs to call the ”u61 add item” function. Indeed this function allows
you to add squares to a block and this is what you generally need to do since at the very start of the
function the block is empty, and you wish to end with a fully defined block. You should add least one
square in evrey block, or the game might freeze.

Of course you can make the shape generation depend on a curse flag or something, but I feel that
these kind of things should be done in the ”u61 new shape” instead. For instance, if you want to block
the shape 0 for a while, it’s IMHO better not to generate a 0 output in ”u61 new shape” than modify
temporarly the creation of shape 0 in ”u61 do shape”.

One important thing is to know that after ”user do shape” has been executed, U61 always executes
the ”u61 center” function, which might alter the coordinates you have set. So you should not try to
recognize a block later in the script by asking the coordinates of his squares, unless you are sure that
”u61 center” can not alter them, or if you know in what way they have been changed. You may wonder
why I chose this behavior, for it can seem anoying. Well, I just personnally estimate that an automatic
”u61 center” is a comfortable thing to have, and it avoids badly centered blocks.

9.3.3 Example

This set of functions generates:

• A triangle with color 0 if num is 0

• A square with color 2 if num is 1

• A circle with color 5 if num is 2

function user_do_shape(num)
if num==0 then

triangle(0)

48 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

elseif num==1 then
square(2)

else
circle(5)

end
end

function triangle(color)
u61_add_item(0,0,color)
u61_add_item(0,1,color)
u61_add_item(1,1,color)
u61_add_item(0,2,color)
u61_add_item(2,2,color)
u61_add_item(0,3,color)
u61_add_item(1,3,color)
u61_add_item(2,3,color)
u61_add_item(3,3,color)

end

function square(color)
u61_add_item(0,0,color)
u61_add_item(1,0,color)
u61_add_item(2,0,color)
u61_add_item(3,0,color)
u61_add_item(0,1,color)
u61_add_item(3,1,color)
u61_add_item(0,2,color)
u61_add_item(3,2,color)
u61_add_item(0,3,color)
u61_add_item(1,3,color)
u61_add_item(2,3,color)
u61_add_item(3,3,color)

end

function circle(color)
u61_add_item(1,0,color)
u61_add_item(2,0,color)
u61_add_item(0,1,color)
u61_add_item(3,1,color)
u61_add_item(0,2,color)
u61_add_item(3,2,color)
u61_add_item(1,3,color)
u61_add_item(2,3,color)

end

9.4. USER GET CURSE NAME 49

9.4 user get curse name

9.4.1 Declaration

user_get_curse_name(num)

• Arguments: a code previously returned by ”user new curse”

• Return values: the name of the curse, which should be shown to the player

• Rights: map read

9.4.2 Description

This function has a very simple goal: provide the user with a name for each curse. This name will be
disaplyed in the status zone, under his map. Of course the game will run correctly if this functions
returns a blank string, bug it will certainly not help the players.

The names should not be too long. At the time I write these lines, there’s a limit of 10 characters, so
if you exceed this limit the name will be truncated. And be carefull if your name uses lots of ”W” and
”M”, for these letters are usually wider then plain ”I”s.

9.4.3 Example

The following sample defines 2 curses names. A default name (”surprise”) has been defined in case the
curse is unknown, which should, it’s true, never arrive if the code is consistent.

function user_get_curse_name(num)
local name

name="surprise"

if (num==ID_CURSE_MALEDICTION_OF_GOOLOO) then
name="gooloo"

elseif (num==ID_CURSE_YOULLDIE) then
name="you’ll die"

end

return name
end

9.5 user get program

9.5.1 Declaration

user_get_program()

• Arguments: none

50 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

• Return values: the name of the program (”u61”)

• Rights: none

9.5.2 Description

This function must be present so that the game engine makes sure the script is a valid U61 script. Of
course the fact that this function does not exist or does not return the good value does not mean the
script is actually error free, but it provides a good way to detect obvious errors such as using a totally
wrecked file.

If this function is not present or does not return the correct value, U61 will display an error message
each time the script is read.

9.5.3 Example

The code for this function should always be the same and look like this:

function user_get_program()
return "u61"

end

9.6 user get version

9.6.1 Declaration

user_get_version()

• Arguments: none

• Return values: the version of the program

• Rights: none

9.6.2 Description

This function allows the game engine to know which version the script was designed for. This is very
important, since the script API can slightly change between 2 different releases - of course the less it
changes the better it is, but it’s good to have a way to know the version anyway.

If this function is not present or does not return the correct value (the version of the U61 binary which
should be used with the script), U61 will display an error message each time the script is read.

9.6.3 Example

The code for this function should look like this:

9.7. USER LAND 51

function user_get_version()
return "1.0.0"

end

9.7 user land

9.7.1 Declaration

user_land()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read

9.7.2 Description

This function is called when it’s not possible to move the block down any more. It’s role is to modify
the shape of the block before it is merged with the map. Most of the time, this function will do nothing,
but you may wish - in some cases - to change the shape of the block just as it lands.

Let’s take an example: you might consider that your blocks are not ”solid” blocks, ie they break
themselves into parts as they land. This is a very common trick in block-based games, and that’s why
it’s available in U61.

You could also wish to send a curse as the block lands, or modify the map. This is not allowed because
of performances issues, which lead me not to give the ”map write” right to this function. Indeed this
function is very important for the ”anticipation” mode. In this mode, the user can view in real-time
where the block will land. This feature is achieved by calling the ”user move down” function until
”user block land” is required. And I have decided that such operations (as they are called very very
often) should not require a full backup of the map, which can be quite CPU-consuming since the map
structure can be quite big. It isn’t that big now but I expect it to grow as I will add features to U61. So
basically, just remember that there’s a good reason not to modify the map in this function. However, it
does not mean you have no callback at all when a block lands. Indeed, it is possible to set up a callback
on a pattern match by using ”user match pattern”. This should - I hope - be enough in most cases.

9.7.3 Example

This example shows a function that makes blocks move up of one row as they land. This should make
them hang in the air as they land. I can’t figure out in what kind of context it could be usefull, but it’s
only a theorical example:

function user_land()
u61_set_block_y(u61_get_block_y()-1)

end

52 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

9.8 user match pattern

9.8.1 Declaration

user_match_pattern(match_count)

• Arguments: the number of times ”user match pattern” has already been called during last match-
ing session.

• Return values: 1 if some matching shapes and/or colors have been found, 0 otherwise.

• Rights: map read, map write

9.8.2 Description

This is a fundamental function in U61. It is responsible for saying which squares should explode when
a block lands. It is called after the block has landed, ie ”user land” has already been called when
”user match pattern” is called. It is also responsible for incrementing the score of the player.

You’ll notice that this function has no access rights on the block. This is because there’s no more block
when this function is called. Indeed, all the squares of the falled block are merged with the map. This
means that if there were 10 squares in the map and 3 squares in the block, when this function is called
you get an ”all in one”map with 13 squares. By default, the block squares are put ”as is” on the map,
but if you want a more accurate control, you may tweak the ”user land” function.

The pattern to be matched can be anything, based on the position and the color of the map squares.
You may search a completed horizontal line (as in the ”classic”) script, some sort of alignments, a shape,
a sequence of colors, well, anything! I believe the ”user match pattern” function is what makes a given
set of rule realy different from the others.

Once the pattern is matched, it is a good idea to make the squares which should disappear explode.
Technically, you could remove them right away (I’ve not tried it still), but I just think it’s more user
friendly for the player to see the block explode. The common method is to try and find a pattern, and
when the first pattern is found, stop the search and make the founded pattern explode. Then, the Lua
function is exited, and the game keeps on going. It’s take a little time for squares to explode. While
there’s at least one square exploding on the map, U61 does not make a new block appear. Instead,
it waits for the explosion to end, and when the explosion is ended, it runs the ”user match pattern”
function again. This way, it’s possible to have cascading effects, and the player can understand why 12
of his squares disappeared while a pattern is usually made of 3 blocks.

This leads to a very important point: the ”match count” parameter. This parameter is equal to 0 when
”user match pattern” is called for the first time. Then logically, ”user match pattern” should make
some squares explode (if needed of course) and let the squares alone while they blow up. When the
explosion is finished, ”user match pattern” is called again, but this time ”match count” is 1. Next time
it will be 2, etc... When there’s no more pattern to match, then U61’s engine gives the player a new
block, and resets the internal value corresponding to ”match count”. This is a usefull feature for it
allows an accurate control of the score, for instance, you might make something that gives:

• 100 points if there’s only one pattern matched

• 300 points if there are two pattern matched

9.8. USER MATCH PATTERN 53

• 700 points if there are three pattern matched

• etc...

9.8.3 Example

The following example finds any horizontal line which is filled with squares, or has only one square
missing. It’s very close from the pattern match used in the ”classic” script. Note that the code does not
lie directly in user match pattern but in an external function which is more general and can be used in
another set of rules if needed.

function user_match_pattern(match_count)
return match_holed_line(match_count,1)

end

function match_holed_line(match_count,max_hole)
local x
local y
local width
local height
local holes
local lines

width=u61_get_width()
height=u61_get_height()

lines=0
y=0
while y<height and lines==0 do

holes=0
x=0
while x<width do

if u61_get_square_color(x,y)<0 then
holes=holes+1

end
if not (u61_is_square_exploding(x,y)==0) then

holes=holes+1
end
x=x+1

end
if holes<max_hole then

delete_line(y)
lines=lines+1

end
y=y+1

end

if lines>0 then
u61_add_score((match_count+1)*1000)

54 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

if (match_count>=3) then
u61_add_antidote()

end
end

return lines
end

9.9 user move down

9.9.1 Declaration

user_move_down()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read

9.9.2 Description

This function looks like ”user move left” and ”user move right” at first sight, but it is quite different.
Indeed the ”user move down” function must imperatively move the block down in some way. The reason
is that this function is used in the following cases:

• The user presses the ”move down” key (that’s to say he presses the key which he has specified in
his settings to be the ”move down” key).

• A certain amount of time has ellapsed, and U61 decides to make the block move down. How long
this delay is depends on the global speed of the game, which can be set in the game options, and
generally increases while the game is running. And this is why it is important that one of the
actions performed by ”user move down” is actually to shift the block down. Indeed, one of U61
basic rules - the ones you can not change within the script -, is that ”the block falls, and when
it lands on other blocks, it freezes”. If ”user move down” does not move the block down, you
could get a situation where your block never freezes and you never get any new block. Basically,
a new block is sent to the user when a call to ”user move down” has created a conflict between
the block’s squares and the map’s squares. It is only in this case that the block will be freezed
and that ”user land” and ”user match pattern” will be called.

• The user presses the ”drop” key, in this case ”user move down” is called as often as possible until
the block is stuck on the map. Again, if you ever make a ”user move down” that does not lead to
an incoherent position after a certain amount of calls, this function will loop for ever...

Please note that in this function you do not need to check wether the operation you want to per-
form is possible or not. As with other ”user move ...” or ”user rotate ...” functions, the C++ engine
automatically checks if something is wrong, and if there’s a conflict it rollbacks the whole operation.

9.10. USER MOVE LEFT 55

9.9.3 Example

The following function moves the block down, and increments the value of a global value at the same
time:

MOVE_DOWN_COUNTER=123

function user_move_down()
u61_set_block_y(u61_get_block_y()+1)
u61_set_global(MOVE_DOWN_COUNTER,u61_get_global(MOVE_DOWN_COUNTER)+1)

end

9.10 user move left

9.10.1 Declaration

user_move_left()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read

9.10.2 Description

This function can generally be called in 2 cases:

• The user has pressed the ”Move left” key. (which key it is physcically depends on the user’s
settings). This is the most common case, and you had certainly thought of it.

• The ”Rotate left” or ”Rotate right” key has been pressed, and the ”user rotate ...” corresponding
callback has put the block in such a state that there’s a conflict between a square of the block
and a square of the map. Therefore U61 automatically simulates a ”Move left” or ”Move right”
key press, and then retries to execute the ”user rotate ...”. This is an interesting feature since it
enables the user to rotate his blocks even if the block is stuck to a wall.

Apart from this last point the ”user move left” function is very similar to ”user rotate left”. One could
certainly imagine scripts vhere ”user move left” would not translate the block on the left. And even if
in your script ”user move left” perfor;s a left translation of the block, it is possible in this function to
test if a given curse is active and change the function’s behavior. This is what the ”goofy” curse (in
U61 0.2.2) does: it inverts the effects of ”user move left” and ”user move right”, which makes the game
a little... harder to control!

It’s important to note that substracting 1 to the x coordinate of each square of the block won’t make
the block move to the left. Indeed after each call to ”user move left” U61 centers the block (similar to
a call to u61 center), so the only way to make a block translate is to use the ”u61 set block x” function
(or any associated function).

56 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

9.10.3 Example

This example function makes the block move left and down at the same time:

function user_move_left()
u61_set_block_x(u61_get_block_x()-1)
u61_set_block_y(u61_get_block_y()+1)

end

9.11 user move right

9.11.1 Declaration

user_move_right()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read

9.11.2 Description

Similar to ”user move left” but associated to the ”Move right” key.

Like with the ”user rotate ...” functions, ”user move right” does not have to be the exact contrary of
”user move left”. You are just free to imagine the weirdest behaviors.

9.11.3 Example

In this example, the block is shifted of 2 blocks right:

function user_move_right()
u61_set_block_x(u61_get_block_x()+2)

end

9.12 user new curse

9.12.1 Declaration

user_new_curse(num)

• Arguments: a random value generated by the C++ engine

• Return values: the code of the curse that will be triggered if the current curse block explodes

• Rights: block read, map read

9.13. USER NEW SHAPE 57

9.12.2 Description

This function is very similar to ”user new shape”. It’s goal is to control the nature of the next curse
which will be given to the player. Its only purpose is to return an integer which will be interpreted by
”user do curse” later.

This function is called long before the player actually matches a pattern. Indeed, it is required to do so
since the name of the next curse must be displayed in the player’s information board/zone.

Of course, this ”next curse” generation can be influenced by curses which affect the current player. For
instance, you might decide that when a player is victim of the ”THOU SHALL DIE” curse, then he
can only get poor curses which have almost no effects on the opponents, and leave him in a hopeless
position, bound to lose very soon. This is not fair practice but it’s theorically possible 8-P

9.12.3 Example

The following example returns a curse code between 0 and 9 if the ”ID ZOUBIDA MALEDICTION”
curse is activated, and a code between 0 an 19 if not.

ID_ZOUBIDA_MALEDICTION=5

function user_new_curse(num)
if u61_get_curse_age(ID_ZOUBIDA_MALEDICTION)<0 then

num=mod(num,20)
else

num=mod(num,10)
end

return num
end

9.13 user new shape

9.13.1 Declaration

user_new_shape(num)

• Arguments: a random number between 0 and 1 000 000 000

• Return values: the code that should be use for the next call to ”user do shape”

• Rights: block read, map read

9.13.2 Description

This function is usefull for you to control the codes used for shape generation. Basically, a set of scripts
might require the shape number to be between 0 and 6. So in this case you will return a value between
0 and 6. The ”num” argument is here to provide a randomly generated number. You are free to use

58 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

this value or not, but keep in mind that if you don’t use it, it will be too late in the ”user do shape”
function to use some random numbers. You can consider this function as an intermediate between the
random function and the function that generates the shape. Indeed the number it returns is used by
the C++ engine to generate an internal event which will be sent to all remote players.

Tweaking this function can be very interesting if you want for instance to set up a mode where the
player only receives blocks with shapes 34 an 125.

9.13.3 Example

This function returns a shape code between 0 and 6. More precisely, it returns:

• 40% of 0

• 20% of 1

• 10% of 2,3,4

• 5% of 5,6

user_new_shape(num)
local result

num=mod(num,100)

if num>=60 then
result=0

elseif num>=50 then
result=1

elseif num>=30 then
result=2

elseif num>=20 then
result=3

elseif num>=10 then
result=4

elseif num>=5 then
result=5

else
result=6

end

return result
end

9.14 user rotate left

9.14.1 Declaration

user_rotate_left()

9.15. USER ROTATE RIGHT 59

• Arguments: none

• Return values: none

• Rights: block read, block write, map read

9.14.2 Description

This function is called when the user presses the ”Rotate left” key (what key exactly it is depends his
key settings).

It may or may not perform a geometrical rotation. This is the case with the ”classic.lua” script, but if
you play with the ”vertical.lua” script, you’ll find out that rotation is in fact a ”color shift”. Basically,
rotation should be any player launched function that alters your block but is not a plain translation.

If after executing the code of ”user rotate left” there’s a confict between a block square and a map
square, I mean if they have the same absolute position, then the operation is automatically cancelled.
This is one of the reasons you do not get ”map write” access in this function, indeed, the rollback of a
map, especially the act of making a copy of a whole map in case the operation fails would in my opinion
be exagerately time consuming, and I like the idea that ”user rotate left” only affects the block.

This function is granted a ”map read” access, therefore you check if a curse is activated and modify the
behavior of ”user rotate left” dynamically.

9.14.3 Example

In order to show that ”user rotate left” does not need to be a geometrical correction, this sample function
performs a left/right flip of the block:

function user_rotate_left()
local size
local i

size=u61_get_nb_items()
i=0
while i<size do

u61_set_item_x(i,-u61_get_item_x(i))
i=i+1

end
end

9.15 user rotate right

9.15.1 Declaration

user_rotate_right()

• Arguments: none

• Return values: none

60 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

• Rights: block read, block write, map read

9.15.2 Description

Exactly the same than ”user rotate left”. It’s important to note that ”user rotate left” does not need
to be the contraryof ”user rotate right”. You may for instance decide that for a given script the ”rotate
left” and ”rotate right” keys will correspond to 2 ”special actions” which are by no way linked to each
other. In fact the reason these functions are call ”user rotate ...” for is that in most scripts this name
makes sense, and it would be IMHO a waste of time to redefine for each key and each script what label
should be associated to keys.

9.15.3 Example

The following function is a function that increments the color of all the squares of the block:

function user_rotate_right()
local size
local i

size=u61_get_nb_items()
i=0
while i<size do

u61_set_item_color(i,mod(u61_get_item_color(i)+1,8))
i=i+1

end
end

9.16 user square blown up

9.16.1 Declaration

user_square_blown_up(x,y)

• Arguments: coordinates of the square which blew up

• Return values: none

• Rights: map read, map write

9.16.2 Description

This function is called when a square has exploded. Explosions are usually started after a pattern match
(see ”user match pattern”), and then the C++ engine handles the explosion by himself, without calling
any script. This takes a little time - during which the game keeps running - and when the explosion is
finished, after say approximately 1/2 second, ”user square blown up” is called.

9.16. USER SQUARE BLOWN UP 61

If the square that exploded had the same location that the current curse, then the ”user do curse”
function is launched. You do not have to do anything about this, it’s just done automatically by the
C++ engine.

Note that a single call to ”user match pattern” can cause several squares to explode, so there will be
several calls to ”user square blown up” - one per square to be precise -.

It’s the responsibility of ”user square blown up” to change the map’s structure after the square’s explo-
sion. If for instance the blown up square is to be replaced by the squares which are above it, one has
to shift ”manually” the squares down. Of course, you can decide that in some circumstances, the end
of the explosion should cause the start of a new explosion elsewhere...

When this function is called, the square is still present on the map, and it still has its color. I mean
that you can make the difference between a blue and a red blown up squares. This can be usefull
if you want to set up cascading chains of explosions. Such effects can also be obtained by tweaking
”user match pattern”, but you may prefer to place your code in ”user square blown up”, especially if
your chain of explosion really depends on where the previous explosion was. The important thing to
remember is that when there are no exploding squares and no pattern to match left, then the player
gets a new block.

9.16.3 Example

The following function shifts down all the squares that are above the blown up square, and changes their
color to that of the disappeared square. Note that this function moves the ”curse” square if needed.

function user_square_blown_up(x,y)
shift_column_down_and_color_it(x,y)

end

function shift_column_down_and_color_it(x_col,y_bottom)
local y
local color

color=u61_get_square_color(x_col,y_bottom)
y=y_bottom
while u61_get_square_color(x_col,y-1)>=0 and y>0 do

u61_set_square_color(x_col,y,color)
y=y-1

end
u61_set_square_color(x_col,y,-1)

if u61_get_curse_x()==x_col and u61_get_curse_y()<y_bottom then
u61_set_curse_y(u61_get_curse_y()+1)

end
end

62 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

9.17 user time callback 1

9.17.1 Declaration

user_time_callback_1()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read, map write

9.17.2 Description

This function is called once per second. It has all rights on the map and block, so it’s possible to do
anything with it. By default, it increments the score of the player by 1 point, since the longer you play,
the better you are...

Another typical use of this function would be to check if a curse is active and execute a special function
if the curse is set on.

9.17.3 Example

In this example, if the ”ID BAD LUCK” curse is active, then the player’s score is not incremented any
more.

ID_BAD_LUCK=13

function user_time_callback_1()
if (u61_get_curse_age(ID_BAD_LUCK)<0) then

u61_add_score(1)
end

end

9.18 user time callback 10

9.18.1 Declaration

user_time_callback_10()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read, map write

9.19. USER TIME CALLBACK 100 63

9.18.2 Description

This function is called 10 times per second. It has all rights on the map and block, so it’s possible to
do anything with it.

This is a very good place to code most of the curse effects. Indeed, doing something 10 times per second
makes things look fast and smooth enough in many cases, and it’s not *too* time consuming (at least
not as much as placing the code in user time callback 100).

9.18.3 Example

In this example, if the ”ID SHIFT LEFT” curse is active, then the block is moved to the left.

ID_SHIFT_LEFT=33

function user_time_callback_10()
if (u61_get_curse_age(ID_SHIFT_LEFT)<0) then

u61_set_block_x(u61_get_block_x()-1)
end

end

9.19 user time callback 100

9.19.1 Declaration

user_time_callback_100()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read, map write

9.19.2 Description

This function is called 100 times per second. It has all rights on the map and block, so it’s possible to
do anything with it.

Please take care not to put any complex code here, since it’s executed very often. For instance, if there
are 5 players in a game, it will be called 500 times per second, so if it takes 1 millisecond to be executed,
then this function will eat up 50% of the CPU, so there won’t be much left for other functions (which
include all other Lua functions, C++ core engine, other tasks ran by the OS....). Basically, this function
is here so that people who want a very accurate control of what’s happening have this control, but in
most cases one should try to use user time callback 10 or user time callback 1.

9.19.3 Example

In this example, if the ”ID SHIFT RIGHT” curse is active, then the block is moved to the right. One
could have - as in most cases - used the user time callback 10 function instead, only the block would

64 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

have moved slower.

ID_SHIFT_RIGHT=66

function user_time_callback_100()
if (u61_get_curse_age(ID_SHIFT_RIGHT)<0) then

u61_set_block_x(u61_get_block_x()+1)
end

end

9.20 user use antidote

9.20.1 Declaration

user_use_antidote()

• Arguments: none

• Return values: none

• Rights: block read, block write, map read, map write

9.20.2 Description

This function is called when the player presses the key associated to the ”use antidote” function. It is
a user callback since there can not be a generic function for this. Indeed, what has to be done for such
an action really depends on how all the curses have been coded.

Here are a few examples of what one could code in this function:

• Remove the oldest curse. That’s an obvious solution, when you use an antidote, it cures your
oldest illness.

• Remove the curses in a special order, based on the severity of the curse. This way one could
imagine that an antidote always cures the most annoying curse.

• Change the effect of curses. One could imagine special curses which the antidote can’t really kill,
but can make them less annoying, as if the desease were half cured.

• Invert the effect of the antidote. Indeed, a nice curse would be to put the player in such a state
that the use of an antidote has the opposite effect of what he expects.

So as there are so many possibilities, I think it’s a good thing to let the scripter code whatever he wants
for this function. In fact, the one thing to remember about antidotes is that they appear in the status
box of the player, and it’s supposed to help the player.

9.20. USER USE ANTIDOTE 65

9.20.3 Example

In this example, the antidote cures the oldest curse which affects the player, except for the ”ID ROTTEN CURSE”
curse. This makes the ”rotten” curse an uncancellable curse, from an antidote point of view. Of course
you can imagine that there are other ways to cure it, such as matching a special pattern for instance.

ID_ROTTEN_CURSE=66

function user_use_antidote()
local oldest

oldest=u61_get_oldest_curse(0)
if oldest~=ID_ROTTEN_CURSE then

u61_cancel_curse(oldest)
end

end

66 CHAPTER 9. SCRIPT CALLBACKS REFERENCE

Chapter 10

Script API reference

10.1 Introduction

The API functions are functions you can call within Lua, when you are scripting, to get information
from the core C++ engine, and also modify what’s happening in the game.

Technically speaking, these functions are just plain Lua functions mapped over C functions in the core
engine, and these C functions call C++ methods off the ”U61 Map” and ”U61 Block” C++ objects. In
this document, I will later say that the C++ engine calls some API fonctions automatically. In fact, it
does not call the Lua functions but the C++ methods directly. But the result is exaclty the same, only
the C++ engine does not make as many checks as the API functions do.

Those functions are quite ”crash proof”. I mean that various checks are triggered when you call them.
For instance, calling a function which requires an array index with a bad, inexisting index will simply
result in returning a default value, but there should not be (such a bug should be reported) a system
crash of the core C++ engine.

The design of this API is not perfect, so maybe I’ll create more functions later, since the functions I
provide here are very low-level functions. However, I’ll try and do my best not to remove any functions,
so that in the long run scripts can be re-used easyly, and remain compatible with each other.

10.2 u61 add antidote

10.2.1 Declaration

u61_add_antidote()

• Arguments: none.

• Return values: none.

• Rights: map write.

67

68 CHAPTER 10. SCRIPT API REFERENCE

10.2.2 Description

Gives an antidote to the current player.

The given antidote should appear in the status zone (a little heart in the default theme). The player is
not forced to use it right away. In fact, as long as there’s at least one antidote available, any press on
the ”use antidote” key will run the ”user use antidote” function.

Note that even if the antidote does not appear in the status zone for there are already too many
antidotes available, the ”u61 add antidote” will function correctly, and ”u61 get nb antidotes” should
always return the exact value.

10.2.3 Example

In this example, we give an antidote and a score bonus to the player.

function nice_present()
u61_add_score(1000)
u61_add_antidote()

end

10.3 u61 add item

10.3.1 Declaration

u61_add_item(x,y,color)

• Arguments: coordinates and color of the square to add.

• Return values: none.

• Rights: block write

10.3.2 Description

This function adds a new square to the current block. It is the function which should be called in the
”user do shape” callback, to build new blocks before they start falling.

You can consider this function as an ”append” method on the block object. In a way, the block is a
vector of squares, which grows as you call ”u61 add item”, and can be emptied with ”u61 clear block”.
If you had a block with 3 squares, after a call to this function, it will have 4 squares. The added square
has an index of [n-1], if the size of the block is n.

Of course, the square properties which are set up by this function (position and color), can be changed
later in the game.

10.3.3 Example

In this example, we add a square with a parameterd color at the right of the square which is already at
the right extremity of the block.

10.4. U61 ADD SCORE 69

function expand_right(color)
local max_x
local x
local y
local i

max_x=0
y=0

i = u61_get_nb_items()-1
while i>=0 do

x=u61_get_item_x(i)
if x>max_x then

max_x=x
y=u61_get_item_y(i)

end
i=i-1

end

u61_add_item(x,y,color)
end

10.4 u61 add score

10.4.1 Declaration

u61_add_score(score_diff)

• Arguments: the value which should be added to the score.

• Return values: none.

• Rights: map write.

10.4.2 Description

This function adds some points to the current score.

You can also use this function with negative values, if you want to decrease the score of a player. In
fact, this function is really equivalent to a manual call to ”u61 get score” and then ”u61 set score”. It
is there to avoid you the pain of calling 2 functions where 1 is enough in most of the cases.

10.4.3 Example

The following function adds some points to the player only if the ”NO POINTS” curse is not activated.

ID_NO_POINTS=33

70 CHAPTER 10. SCRIPT API REFERENCE

function tweaked_add_score(score_diff)
if u61_get_curse_age(ID_NO_POINTS)<0 then

u61_add_score(score_diff)
end

end

10.5 u61 blow up square

10.5.1 Declaration

u61_blow_up_square(x,y)

• Arguments: the coordinates of a block in the map.

• Return values: none.

• Rights: map write.

10.5.2 Description

This function starts an explosion at the given location, it should be used in the ”user match pattern”
function.

Of course, in the ”user match pattenr” function, you could directly remove squares from the map, but
you can get a nicer effect by calling the ”u61 blow up square” function. It will indeed start an explosion
on a given square, and at the end of the explosion - that’s to say a few game cycles after the explosion
has started -, the C++ core engine will call your ”user square blown up” callback. This way you may
start an explosion, let the game run while the explosion is displayed to the player, and then get some
control of what’s happening at the end of the explosion with the ”user square blown up” function.

This function is very usefull if you want to create some cascading effects. In fact, I don’t know about
any other way to do it yet...

10.5.3 Example

This example blows up the bottom line of the map. What has to be done when the explosion is over is
not defined here, for it is defined i the ”user square blown up” function.

function blow_bottom()
local x
local y

y=u61_get_height()-1
x=u61_get_width()-1
while x>=0 do

if u61_get_square_color(x,y)>=0 then
u61_blow_up_square(x,y)

end

10.6. U61 CANCEL CURSE 71

x=x-1
end

end

10.6 u61 cancel curse

10.6.1 Declaration

u61_cancel_curse(curse)

• Arguments: the id of a curse.

• Return values: none.

• Rights: map write.

10.6.2 Description

This function cancels a persistent curse which had been set up with ”u61 register curse”.

This function cures the illness caused by a curse by disactivating it. It can be used in the ”user use antidote”
function for instance. Of course any persistent curse is automatically removed with time, but this func-
tion is very usefull in the case of a pseudo-permanent curse which has a very long delay.

10.6.3 Example

In this example, we disable the ”ID CURSE HUNGRY” curse manually.

ID_CURSE_HUNGRY=10

function feed_the_beast()
u61_cancel_curse(ID_CURSE_HUNGRY)

end

10.7 u61 center block

10.7.1 Declaration

u61_center_block()

• Arguments: None

• Return values: None

• Rights: block write

72 CHAPTER 10. SCRIPT API REFERENCE

10.7.2 Description

This function centers the block, this means that after it has been called, the gravity center of the block
(approximately), will be located at (x,y), x and y being the global coordinates of the block.

This is very usefull when you want to code something like a rotation or a symetry. You can indeed
code things in a simple manner using ”x=-x” like algorithms, and then call ”u61 center block” to
center the block. If you had not this function, there could be situations where after a sequence of
rotations/symetries, a block could have moved to the left and/or right. Worse, a rotation could cause
the block to move down, which is bad in a block-based game. Please note that this function does note
change the global (x,y) values of the block (access by ”u61 get block x” for instance). Its role is only
to make (x,y) be the actual center of the block.

This function is automatically called by the script engine after the following user callbacks:

• user rotate left

• user rotate right

• user move left

• user move right

• user move down

10.7.3 Example

The following example leaves the block in a unchanged state. Indeed, the squares are translated, but
”u61 center block” cancels the translation.

function leave_block_unchanged()
local i

i = u61_get_nb_items()-1
while i>=0 do

u61_set_item_x(i,u61_get_item_x(i)+1)
i=i-1

end
u61_center_block()

end

10.8 u61 clear block

10.8.1 Declaration

u61_clear_block()

• Arguments: None

• Return values: None

• Rights: block write

10.9. U61 DELETE ANTIDOTE 73

10.8.2 Description

This function clears the current block, this means it removes all the squares from it.

Beware not to leave a cleared, empty block falling in the players map, because it might cause some
problems, since the C++ engine will not be able to find out when the block is supposed to have landed.

10.8.3 Example

In this example, we imagine that we want to change the shape of the block as it falls. Since ”user do shape()”
is always called on an empty block, the functions which prepare shapes usually do not clear the block
first. So we need to force the block clear in we want to change completely the shape of the block outside
the ”user do shape” function.

function change_shape_to_tetramino_bar()
u61_clear_block()
tetramino_bar()

end

10.9 u61 delete antidote

10.9.1 Declaration

u61_delete_antidote()

• Arguments: none.

• Return values: none.

• Rights: map write.

10.9.2 Description

Removes an antidote from the player available antidotes.

Note that it’s not necessary to call this function within the ”user use antidote” function, since the
number of antidotes is automatically decreased by the C++ core engine. However, you might want to
use this function if you want to remove manually some antidotes.

If you call this function too many times, the number of antidotes will remain 0, it should never get
negative, since the C++ engine will not allow it.

10.9.3 Example

This function clears all the antidotes of a player.

function clear_antidote()
while u61_get_nb_antidotes()>0 do

74 CHAPTER 10. SCRIPT API REFERENCE

u61_delete_antidote()
end

end

10.10 u61 get anticipation state

10.10.1 Declaration

u61_get_anticipation_state()

• Arguments: none.

• Return values: true (1) if anticipation mode is on, or false (0).

• Rights: map read.

10.10.2 Description

This function returns the state of the anticipation mode, that means wether the player should see where
the block will land if he presses the ”drop” key right away.

You may have noticed that this parameter seems available in the player options menu, and the player
might choose to have this information or not. However, the ”u61 get anticipation state” function does
not return the state of the menu item. Indeed, the ”anticipation frame” is drawn only if the menu option
has been set to ”on” *and* the ”u61 get anticipation state” returns true. So if you set the option to
false in the menu, you will never see it, no matter what happens in the game.

10.10.3 Example

In this example, we return true if both anticipation and preview mode are set to true.

function is_game_easy()
local result

if u61_get_anticipation_state() and u61_get_preview_state() then
result=1

else
result=0

end

return result
end

10.11. U61 GET BLOCK X 75

10.11 u61 get block x

10.11.1 Declaration

u61_get_block_x()

• Arguments: None

• Return values: The x coordinate of the block.

• Rights: block read

10.11.2 Description

This function returns the x coordinate of the block. This value should approximately correspond to the
center of gravity of the block.

10.11.3 Example

The following function returns the real position of a square in a block, ie the position this square has
on the map.

function get_absolute_x(i)
return u61_get_block_x()+u61_get_item_x(i)

end

10.12 u61 get block y

Exactly the same as ”u61 get block x”, but x becomes y...

10.13 u61 get curse age

10.13.1 Declaration

u61_get_curse_age(curse)

• Arguments: the id of a curse.

• Return values: the age of the curse.

• Rights: map read.

76 CHAPTER 10. SCRIPT API REFERENCE

10.13.2 Description

This function returns the time ellapsed since the last call to ”u61 register curse” with the same curse
id. If the curse is not active at all, then the function returns -1.

The time is counted in game cycles. It takes 100 game cycles to make one second. It’s in fact the same
unit used in ”u61 get time()”.

This function’s primary goal is to allow the scripter to know wether a curse has been registered with
”u61 register curse”. These registered curses appear in the player’s status zone, and are representent
by little skulls in the default theme. A typical use of this function would be to test if its return value
is greater or equal to 0, and decide to disable and/or enable features in the game.

10.13.3 Example

In this example, we don’t allow the user to use the rotate left key if he’s doomed with the ”ID CURSE NO ROTATE”
curse. It supposes there’s a ”low level rotate left” function that does the dirty job of rotating the block.

ID_CURSE_NO_ROTATE=20

function my_rotate_left()
if u61_get_curse_age(ID_CURSE_NO_ROTATE)<0 then

low_level_rotate_left()
end

end

10.14 u61 get curse state

10.14.1 Declaration

u61_get_curse_state()

• Arguments: none.

• Return values: 1 if the curse mode is on, 0 if not.

• Rights: map read.

10.14.2 Description

Returns true if there should be a special ”curse square” on the map.

This function is very different from ”u61 is curse available”. Indeed, it returns true if the map is in such
a mode that a curse square could exists. But this does not garantee there’s a curse square available. A
trivial example is the empty map. If there are no squares at all on the map, you can oviously not have a
special square anywhere. In fact, this function is merely to return the value set by ”u61 set curse state”
but in most of the cases what you’ll need to call is ”u61 is curse available”.

10.15. U61 GET CURSE X 77

10.14.3 Example

In this example, the player has his score freezed when he can’t have any curse square on his map. This
is a very unfair script since he is already disadvantaged by having no weapon at hand.

function add_score_unfair(points)
if not (u61_get_curse_state()==0) then

u61_add_score(points)
end

end

10.15 u61 get curse x

10.15.1 Declaration

u61_get_curse_x()

• Arguments: none.

• Return values: the x coordinate of the ”curse square” in the map.

• Rights: map read.

10.15.2 Description

This function gives the x position of the ”curse square”. This special square is the black and white ”?”
in the default theme.

When this special square disappears (after an explosion), then the ”user do curse” function is called.
Of course you can start curses on other events, such as a special pattern match, but the explosion of
this special square should remain the most common method to issue a curse - at least this is the way I
view things, you may agree or not with me on this point.

This special square historically comes from EITtris. Since U61 is quite extensible I could have honestly
imagined a more original and flexible way to launch curses but I was too lazy and I just like this idea
since it reminds me of all the nights spent playing EITtris with 3 friends on a single computer in a small
student room =8-)

10.15.3 Example

In this example, the player gets a score bonus if the curse square was located in the right or left columns
of the map.

function bonus_if_curse_on_sides()
local x

x=u61_get_curse_x()

78 CHAPTER 10. SCRIPT API REFERENCE

if x==0 or x==(u61_get_width()-1) then
u61_add_score(1000)

end
end

10.16 u61 get curse y

Exactly the same as ”u61 get curse x”, but x becomes y...

10.17 u61 get global

10.17.1 Declaration

u61_get_global(i)

• Arguments: the index of the global value.

• Return values: the value of the global.

• Rights: map read.

10.17.2 Description

This function returns the global value associated to a given index (between 0 and 99).

This function is by no way related to the luac ”getglobal” function. For more information about how
to use it, see the documentation of ”u61 set global”.

10.17.3 Example

This function returns the value of the ID COUNTER value. Note that the lua object ID COUNTER is
a global lua value. However, you can use it safely since it is a constant. It’s just a way to write things
in a cleanier way. Without such constants, the code would rapidly become ununderstandable. But the
value returned by the function is not a global lua value, it’s a local value which has been initialized with
a value stored internally by the C++ core engine.

ID_COUNTER=8

function get_counter()
return u61_get_global(ID_COUNTER)

end

10.18. U61 GET HEIGHT 79

10.18 u61 get height

10.18.1 Declaration

u61_get_height()

• Arguments: none.

• Return values: the height of the map.

• Rights: map read.

10.18.2 Description

Returns the height of the map.

This function always returns 25. It is pretty much like the ”u61 get width” function, so please read
the documentation of ”u61 get width” to understand why you should use this function even if you are
pretty sure it will always return 25.

10.18.3 Example

The following example colors the whole map, using the example function ”colorize row”.

function colorize_map(color)
local y

y=u61_get_height()-1
while y>=0 do

colorize_row(y,color)
y=y-1

end
end

10.19 u61 get item color

10.19.1 Declaration

u61_get_item_color(i)

• Arguments: the index of the square.

• Return values: the color of the square.

• Rights: block read

80 CHAPTER 10. SCRIPT API REFERENCE

10.19.2 Description

Returns the color of a square in the block.

The color should normally always be a regular color (ie between 0 and 7), since having an empty square
in a block does not really make any sense.

10.19.3 Example

The following function returns true if a given color is present in the block.

function is_color_present(color)
local i
local present

present=0

i = u61_get_nb_items()-1
while i>=0 do

if u61_get_item_color(i)==color then
present=1

end
i=i-1

end
end

10.20 u61 get item x

10.20.1 Declaration

u61_get_item_x(i)

• Arguments: the index of the square.

• Return values: the x coordinate of the square.

• Rights: block read

10.20.2 Description

This function returns the x coordinate of a square in the block.

Note that the returned coordinate is not absolute. This means that if you want to have the real position
of this square in the map, you’ll have to call the ”u61 get block x” function too and add the results.

10.20.3 Example

This function returns the width of a block, by getting the min and max x values.

10.21. U61 GET ITEM Y 81

function get_block_width()
local i
local min_x
local max_x

min_x=1
max_x=-1

i = u61_get_nb_items()-1
while i>=0 do

x=u61_get_item_x(i)
min_x=min(min_x,x)
max_x=max(max_x,x)
i=i-1

end

return max_x-min_x
end

10.21 u61 get item y

Exactly the same as ”u61 get item x”, but x becomes y...

10.22 u61 get nb antidotes

10.22.1 Declaration

u61_get_nb_antidotes()

• Arguments: none.

• Return values: the number of antidotes available.

• Rights: map read.

10.22.2 Description

This function returns the number of antidotes available. It is very similar to ”u61 get nb curses”.

The number of antidotes available is not updated by the C++ core engine. You need to give antidotes
to players explicitly, by calling the ”u61 add antidote” function.

You can easily view the value this function would return by counting on the screen the number of little
hearts (assuming you are playing with the default theme) in the status zone. Still, if there are too many
antidotes available, only a limited number of them is displayed. Howvever, the ”u61 get nb antidotes”
will always return the exact value, even if it’s too great to be displayed accurately.

82 CHAPTER 10. SCRIPT API REFERENCE

10.22.3 Example

In this example, we increase the score of the player if he has more than 5 antidotes.

function update_score()
if u61_get_nb_antidotes()>=5 then

u61_add_score(10)
end

end

10.23 u61 get nb curses

10.23.1 Declaration

u61_get_nb_curses(good)

• Arguments: the type of curse to get information about.

• Return values: the number of persistent curses currently active.

• Rights: map read.

10.23.2 Description

This function returns the number of persistent curses which have been set up with ”u61 register curse”.

Calling it with a value of 0 will return you the number of ”bad” curses, and calling it with a value
of 1 will return the number of ”good” curses. For more informations on bad and good curses, see
”u61 register curse”.

You can easily view the value this function would return by counting on the screen the number of little
skulls (assuming you are playing with the default theme) in the status zone. Still, if there are too many
curses activated, only a limited number of them is displayed. Howvever, the ”u61 get nb curses” will
always return the exact value, even if it’s too great to be displayed accurately.

10.23.3 Example

In this example, we decrease the score of the player if he is affected by more than 5 persistent curses.

function update_score()
if u61_get_nb_curses(0)>=5 then

u61_add_score(-1)
end

end

10.24. U61 GET NB ITEMS 83

10.24 u61 get nb items

10.24.1 Declaration

u61_get_nb_items()

• Arguments: none

• Return values: the number of squares in the current block.

• Rights: block read

10.24.2 Description

Returns the number of squares in the current block. It is very usefull if you want to program a loop on
all the squares of the block.

If this function returns 4, it means that there are 4 squares available, which can be accessed with indexes
0,1,2 and 3. Any call outside this range to function like ”u61 set block x” will simply do nothing.

10.24.3 Example

In the following example, the x and y coordinate of each square are exchanged.

function flip_xy()
local i
local x
local y

i = u61_get_nb_items()-1
while i>=0 do

x=u61_get_item_x(i)
y=u61_get_item_y(i)
x,y=y,x
u61_set_item_x(i,x)
u61_set_item_y(i,y)
i=i-1

end
end

10.25 u61 get oldest curse

10.25.1 Declaration

u61_get_oldest_curse(good)

• Arguments: the type of curse to get information about.

84 CHAPTER 10. SCRIPT API REFERENCE

• Return values: the id of the oldest curse.

• Rights: map read.

10.25.2 Description

This function returns the id of the oldest curse which has been set with ”u61 register curse”.

Calling it with a value of 0 will return the oldest ”bad” curse, and calling it with a value of 1 will return
the oldest ”good” curse. For more informations on bad and good curses, see ”u61 register curse”.

It’s important to be able to know rapidly which of the active persistent curses is the oldest one. A very
simple example is a basic ”user use antidote” where you want to remove a curse. You need a way to
choose which one to delete. A possibility is to remove the oldest one, and this way the list of curse
behaves like a FIFO (first in/first out) queue. And there you need the ”u61 get oldest curse” function,
or you would have to poll manually each curse to know his age and compare them...

The id returned by this function could typically be used with ”u61 cancel curse”.

10.25.3 Example

In this example, we remove the oldest curse, except if it is the ”ID CURSE BAD LUCK” curse.

ID_CURSE_BAD_LUCK=13

function special_antidote()
local curse

curse=u61_get_oldest_curse(0)

if curse~=ID_CURSE_BAD_LUCK then
u61_cancel_curse(curse)

end
end

10.26 u61 get preview state

10.26.1 Declaration

u61_get_preview_state()

• Arguments: none.

• Return values: true (1) if the preview should be displayed, of false(0).

• Rights: map read.

10.27. U61 GET SCORE 85

10.26.2 Description

Returns the preview state of the player. The preview is what shows the player what kind of block he
will get next time a block falls.

Unlike the anticipation state, the preview state can not be controlled from the menus. By default, it is
set to true at the beginning of the game, and may be changed by calls to ”u61 set preview state”.

10.26.3 Example

This function gives more points to the player if preview state is off.

function tweaked_add_score(points)
if u61_get_preview_state()==1 then

u61_add_score(2*points)
else

u61_add_score(points)
end

end

10.27 u61 get score

10.27.1 Declaration

u61_get_score()

• Arguments: none.

• Return values: the current score.

• Rights: map read.

10.27.2 Description

This function returns the current score.

One important thing about the score is that it is set to 0 each time the game restarts. The core C++
engine knows what is the player’s highest score, but it does not inform the script about it on purpose.
In fact, different high scores might be displayed for the same player on different machines. This occurs
when someone has been playing for hours and has luckily got a high score of 999999. Then a remote
player decides to connect himself to the game. In this case, he will not be informed that there’s someone
with a 999999 high score. I don’t consider it a bug since it has been designed like this. High scores
and frags are counted differently on every machine. Indeed, each machine calculates the high scores
according to what it sees. What has happened before does not count at all. No matter if the guy playing
on the server has a high score of 999999, what you see if how much he managed to score playing with
you.

86 CHAPTER 10. SCRIPT API REFERENCE

10.27.3 Example

This example returns true if the score is greater than a given value.

function is_score_enough(limit)
local result

result=0

if u61_get_score()>=limit then
result=1

end
end

10.28 u61 get square color

10.28.1 Declaration

u61_get_square_color(x,y)

• Arguments: the coordinates of a square in the map.

• Return values: the color of the square.

• Rights: map read.

10.28.2 Description

This function returns the color of a square in the map. The possible return values are:

• -1 if the square is not activated, ie there’s no colored square at the given coordinates.

• 0-7 if there’s a colored the square. There are 8 colors, ranging from 0 to 7.

This function is very important in the game, and you’ll probably end up in using it all the time if you
create scripts for U61. It is the best way to know if there’s a square at a given position. You just have
to call it and if it returns something greater than 0, then it means there’s something.

It is important to note that it is quite different from ”u61 get item color”. Indeed, ”u61 get item color”
takes an index as a single argument, since the block is a vector of squares, whereas ”u61 get block color”
takes the coordinates of the square as an argument. This is because the map and block objects have
fundamentaly different structures.

10.28.3 Example

In this example, we return 1 if there’s a square at a given location, and 0 if there’s none. This way we
have a true/false function which tells us if the place is free.

10.29. U61 GET TIME 87

function is_there_a_square(x,y)
local exists

exists=0

if u61_get_square_color(x,y)>=0 then
exists=1

end

return exists
end

10.29 u61 get time

10.29.1 Declaration

u61_get_time()

• Arguments: none.

• Return values: the current system time.

• Rights: map read.

10.29.2 Description

This function returns the system time associated to the map. The unit is 0.01 sec, this means that 100
equals one second.

The time can be very usefull, you can for instance use it as a pseudo-random value. This is very
important, since the use of any other random value in a script could raise serious problems. Indeed, in
U61, all the computers make all the calculus about all the players. So if a script generates internally
a random number, then the game may not behave the same on 2 computers which are linked during a
network game. By using the time value, you are sure that your pseudo-random number will be exactly
the same on any computer, so the game will behave correctly. To sum up, the only pseudo-random
values that should be use in U61 are:

• The value returned by ”u61 get time”.

• The value returned by ”u61 get score”.

• The argument of ”user new block”.

• The argument of ”user new shape”.

The time is always positive, but you should not assume that games start at time 0. Indeed, when a
player looses, the game ends, and another game starts, but there’s no time reset. This is for the core
C++ engine to handle messages correctly. Therefore, the time value can get very great.

88 CHAPTER 10. SCRIPT API REFERENCE

10.29.3 Example

In this example, we use the time as a pseudo-random value. The result is a random number between 0
and range-1.

function pseudo_random(range)
return mod(u61_get_time(),range)

end

10.30 u61 get width

10.30.1 Declaration

u61_get_width()

• Arguments: none.

• Return values: the width of the map.

• Rights: map read

10.30.2 Description

Returns the width of the map.

This function always returns 10. So what’s the interest in calling it since everyone knows the map is 10
squares wide. Well, it’s a good habit to use it, one never knows, U61 scripts might someday be used in
a context where maps are lager.

However, I don’t think the width of maps is likely to change, since it would induce many changes in the
themes. I mean that a theme desgined for 10 columns might look ugly if you use it with 16 columns.
I can’t think of a nice solution to this problem, I mean one that would enable players to choose their
themes/scripts independently and get a good looking result.

So as a conclusion, just use this function to get the width of the map, but please do not plan to use
another value than 10 since it would mess up all the themes.

10.30.3 Example

This function modify the color of a whole line in the map. Only the active colored squares are affected.

function colorize_row(y,color)
local x

x=u61_get_width()-1
while x>=0 do

if u61_get_square_color(x,y)>=0 then
u61_set_square_color(x,y,color)

end

10.31. U61 IS BLOCK OK 89

x=x-1
end

end

10.31 u61 is block ok

10.31.1 Declaration

u61_is_block_ok()

• Arguments: none.

• Return values: 1 if the block is correctly placed, 0 if there’s a conflict with the map.

• Rights: map read, block read.

10.31.2 Description

Returns true if the block is correctly placed, and has a correct shape. By ”correct” we mean that:

• there are no squares in the block which are in conflict with the map squares, that’s to say we could
freeze the block as is without superposing a map square and a block square.

• there are no squares in the block that are outside the map, that’s to say too much on the right,
left or too low. If the block is too high it does not matter (think of when the block just start
falling for instance, and you’ll understand why it’s obviously possible).

You may use this function when you want to move the block in a complex manner, or completely
change it, and really need to keep an accurate control on what’s happening. Indeed, this function is
called very often by the C++ core engine, and for instance it’s perfectly useless to call it in functions
like ”user move down” for instance, since the check is already performed, and you’ll only slow down the
game by calling it twice.

But a good example of when ”u61 is block ok” is usefull is a script that needs to make the block cross
the entire map, or move it for say at least 10 squares. Then the C++ core engine won’t be able to detect
if there are squares between the initial and final position. All what the C++ core engine is aware of is
the initial and final positions. So this way the block might (from the player point of view) go through a
solid wall, which is not what the scripter wants. The scripter wants the block to stop if there’s a wall.
So what he’ll have to do is move the block by steps of 1 square and call ”u61 is block ok” each time
and stop if there’s a problem.

It’s usually not a problem if at the end of the script function you leave the block in an incorret state,
with a conflict. Since the C++ core engine performs himself a check, he will move the block up or
sideways so that it fits, or sometimes perform a plain rollback and cancel all your script functions. But
if you want to control exactly what’s happening, then you’ll have to do it yourself in your script.

10.31.3 Example

In this example, the block is moved in both directions x and y, only if there are no squares on its
path. The block is left in an incorrect state but this is not a problem since the C++ core engine will

90 CHAPTER 10. SCRIPT API REFERENCE

automatically cure the problem.

function translation_yx_safe(n)
local i

i=n
while i>0 do

u61_translate_x(1)
u61_translate_y(1)

if u61_is_block_ok()==0 then
i=0

end
i=i-1

end
end

10.32 u61 is curse available

10.32.1 Declaration

u61_is_curse_available()

• Arguments: none.

• Return values: 1 if there is actually a special curse square on the map,0 if there is none.

• Rights: map read.

10.32.2 Description

Returns true if there’s a special curse square available, that’s to say if the ”curse state” parameter is
set to true *and* the curse square is located on an active square in the map.

This function is very different from ”u61 get curse state”. Indeed, if the special curse square is badly
placed, or if it is impossible to place it correctly, for instance when there are no squares at all, then you
might get a situation where ”u61 get curse state” returns true and ”u61 is square available” returns
false. For instance, this is often the case when a new game starts, since there are no squares on the
map, and by default the ”curse state” parameter is set to true.

10.32.3 Example

In this example, we return true if we the special curse square is badly placed, ie when ”u61 get curse state”
and ”u61 is curse available” do not return the same value.

function is_curse_badly_placed()
local result

result=0

10.33. U61 IS SQUARE EXPLODING 91

if u61_get_curse_state()==1 and u61_is_curse_available()==0 then
result=1

end

return result
end

10.33 u61 is square exploding

10.33.1 Declaration

u61_is_square_exploding(x,y)

• Arguments: the coordinates of a square in the map.

• Return values: 1 if the square is exploding, 0 if not.

• Rights: map read.

10.33.2 Description

This function tells if the square is exploding, that’s to say if the player can see an explosion at this
location.

When this function is called, the square is ”still there”. Im mean that it is still possible to test its
color for instance. Basically, a square is in the exploding state after ”u61 blow up square” and before
”u61 square blown up” have been called.

10.33.3 Example

This function counts all the exploding squares from the map.

function count_explosions()
local x
local y
local count

count=0

y=u61_get_height()-1
while y>=0 do

x=u61_get_width()-1
while x>=0 do

if not (u61_is_square_exploding(x,y)==0) then
count=count+1

end
x=x-1

92 CHAPTER 10. SCRIPT API REFERENCE

end
y=y-1

end

return count
end

10.34 u61 register curse

10.34.1 Declaration

u61_register_curse(curse,time,good)

• Arguments: the id of a curse, the time it should last, and the kind of curse it is.

• Return values: none.

• Rights: map write.

10.34.2 Description

This function registers the curse, ie it adds it to the list of active curses. The curse will be active for a
limited time, counted in 1/100 of seconds, but a value of 0 should make it last forever - or at least most
player won’t notice the difference since if you use 0 the curse will last for about 10 hours...

Used with the ”u61 get curse age”, this function allows you program ”persistent” curses. By persistent
curse I mean a curse which is displayed in the player’s status zone (represented with a little skull in the
default theme) and can be cancelled by an antidote. A typical non-persistent curse is a curse that fills
your map with grabage. A typical persistent curse is the curse that forbids you to use some of your
keyboard keys.

Curses set up with ”u61 register curse” can be cancelled manually with ”u61 cancel curse”. Otherwise
they will disappear automatically after some time.

The third parameter allows you to choose wether the curse is a real bad curse or if it’s a ”good” curse.
Basically, it’s up to you to decide which curses are good and which aren’t. Basically a curse that accels
the player is a bad one, and one that slows the player is a good one, since it makes the game easier. So
in fact a ”good” curse is an ”anti-curse”, it’s a benediction opposed to a malediction. For U61’s C++
engine, the only difference between good curses and bad curses is that the icons used to represent them
on the screen are not the same.

10.34.3 Example

In this example, we have defined a function that handles remote curses (see the definition of ”u61 send curse”).
And if the curse id is greater than 50, then we assume the curse is a persistent one, so we set it up for
a time of 60, that’s to say about 1 minute.

function my_handle_remote_curse(curse)
if curse>50 then

10.35. U61 SEND CURSE 93

u61_register_curse(curse,6000,0)
end

end

10.35 u61 send curse

10.35.1 Declaration

u61_send_curse(curse)

• Arguments: the id of a curse.

• Return values: none.

• Rights: map write.

10.35.2 Description

This function sends a curse to the default victim of the current player.

It is probably one the most interesting function in U61. At least it is definitely *the* function which
makes U61 a cool (?) game. Basically, this function sends a message over the network - if needed of
course - to a remote player, and on the remote machine, the ”user do curse” function is called. This
allows a player to alter the map of another player.

A mojor pitfall is to get confused with the difference between what I call a local curse and a remote
curse:

• A local curse is issued when the special ”curse square” explodes for instance. The consequence is
a call to ”user do curse” in the map where the square disappeared with the second parameter set
to 0. In most of the cases, a local curse will do something positive on the player’s map, such as
clearing it.

• A remote curse is issued after an explicit call to ”u61 send curse”. The consequence is a call
to ”user do curse” in the map of the default victim (the name of the victim is displayed in the
player’s status zone), with the second parameter set to 1. Any script code that has a ”map write”
access may call ”u61 send curse”. This way, remote curses can be launched in many situations.
In most of the cases, a remote curse will do something negative on the player’smap, such as filling
it with garbage.

10.35.3 Example

In this example, the player sends a ”SPECIAL CURSE 1” and a ”SPECIAL CURSE 2” to its default
victim. This function might be called within ”user do curse”, but it’snot necessary, you could also call
it when the player has matched a very rare pattern.

SPECIAL_CURSE_1=51
SPECIAL_CURSE_2=52

94 CHAPTER 10. SCRIPT API REFERENCE

function send_special_package()
u61_send_curse(SPECIAL_CURSE_1)
u61_send_curse(SPECIAL_CURSE_2)

end

10.36 u61 set anticipation state

10.36.1 Declaration

u61_set_anticipation_state(state)

• Arguments: a boolean (1 or 0) telling if this mode should be on or off.

• Return values: one.

• Rights: map write.

10.36.2 Description

This function sets the state of the anticipation mode, that means wether the player should see where
the block will land if he presses the ”drop” key right away.

As mentionned in the doc of ”u61 get anticipation state”, this parameter is mixed with the value entered
by the player in the menus, and the preview of where the block will land is drawn only if both are true.
Basically, it should be easier to play with this mode set to true, but some players (me for instance)
find that in the long run it’s not so great to have it set on. So in your scripts, you might decide that a
curse disables this mode (to make the game harder) and enables it back when the curse is over. But for
players like me who do not like the anticipation mode, it would be annoying to see this mode appearing
when I have said in my options that I do not want to have it. So it’s OK to call this function with false
if you want to make things a little harder, but just remember that it will do nothing on players who
have the option set to false anyway.

10.36.3 Example

In this example, we set the mode to false or true according to a curse state.

ID_HALF_BLIND=8

function update_half_blind()
if u61_get_curse_age(ID_HALF_BLIND)>=0 then

u61_set_anticipation_state(0)
else

u61_set_anticipation_state(1)
end

end

10.37. U61 SET BLOCK X 95

10.37 u61 set block x

10.37.1 Declaration

u61_set_block_x(x)

• Arguments: The x coordinate of the block.

• Return values: None

• Rights: block write

10.37.2 Description

This function changes the global x coordinate of the block. Basically, it allows translation.

This function is very important, since it’s not possible to perform a translation by calling ”u61 set item x”.
Indeed, the ”u61 center block”, which is called quite often, modifies the individual coordinates of
each squares in a block so that it’s centered on (x,y), x and y being set by ”u61 set block x” and
”u61 set block y”. So you *need* to call this function if you want to translate the block horizontally.

10.37.3 Example

In this example, we move the block to the middle of the map.

function to_middle()
u61_set_block_x(5)

end

10.38 u61 set block y

Exactly the same as ”u61 set block x”, but x becomes y...

10.39 u61 set curse state

10.39.1 Declaration

u61_set_curse_state(state)

• Arguments: 1 if the special curse square is to be activated, 0 if not.

• Return values: none.

• Rights: map write.

96 CHAPTER 10. SCRIPT API REFERENCE

10.39.2 Description

Sets the current ”curse state”, ie tells if there should be a special curse square available on the map.

As I’m writting this document, the ”curse state” parameter is set to true on a regular basis, so if you
really want to remove the curse permanently, you have to call ”u61 set curse state” continuously. By
default, the curse will be disable for a given time (corresponding to a curse period, that’s to say the
delay until the curse moves and/or changes).

10.39.3 Example

In this example, we disable the special curse square when the user has more than 100000 points. This
should prevent scores from getting too high...

function limit_score_with_curse()
if u61_get_score()>100000 then

u61_set_curse_state(0)
end

end

10.40 u61 set curse x

10.40.1 Declaration

u61_set_curse_x(x)

• Arguments: the x coordinate of the special curse square.

• Return values: none.

• Rights: map write.

10.40.2 Description

Sets the x position of the special curse square - that’s to say the square which launches curses when it
explodes, in the default theme it is the black and white ”?”.

Note that if you call this function with an invalid parameter, ie a position which is outside the map or
where there’s no active square, then the special curse square won’t be visible. In fact, you’ll end up in
a situation where ”u61 get curse state” returns true and ”u61 is curse available” returns false, even if
you have set the curse square as active with ”u61 set curse state”.

You should also keep in mind that it’s not really necessary to call this function to move the curse square
on a regular basis, since this is already done by the C++ core engine. In fact, this function is usefull
when you mess up the whole map with calls to ”u61 set square color”, remove accidentally the square
which was at the special square’s location, and still want the special square to be available. In this case,
you have to move the special curse square manually.

10.41. U61 SET CURSE Y 97

10.40.3 Example

In this example, we put the curse square on the first active square founded. The search starts at the
bottom of the map.

function put_curse_on first()
local x
local y

y=u61_get_height()-1
while y>=0 do

x=u61_get_width()-1
while x>=0 do

if u61_get_square_color(x,y)>=0 then
u61_set_curse_x(x)
u61_set_curse_y(y)
x=-1
y=-1

end
x=x-1

end
y=y-1

end
end

10.41 u61 set curse y

Exactly the same as ”u61 set curse x”, but x becomes y...

10.42 u61 set global

10.42.1 Declaration

u61_set_global(i,value)

• Arguments: an index and a value.

• Return values: none.

• Rights: map write.

10.42.2 Description

This function updates the global value associated to a given index (between 0 and 99).

This function is by no way related to the luac ”setglobal” function. Indeed, in U61, you must *not* use
any global lua variable to store parameters. Lua globals can only be used to store constants. This is
due to the fact that if you use global lua variables:

98 CHAPTER 10. SCRIPT API REFERENCE

• They will be shared by all the players, which might not be what you want.

• They won’t be shared accross the network, since the core engine does not transmit lua globals
between computers.

Therefore, the chances that you end up with a wrecked game are important. Please do not try to do it,
for this kind of bug never appears when you test your script with a single player, but will always occur
during a thrilling internet play. See Murphy’s theory.

So ”u61 get global” and ”u61 set global” are here to help you in case you want to have a persistent
value stored. The values accessed with these functions are different for each player, and do not generate
any inconsistency when used in a network game. Basically thay consist in a array of numbers, where
you can store your own values, for instance parameters linked to a curse. These numbers are set to 0
each time a new game starts, ie each time the map is filled with squares and the player looses.

As of today, numbers are the only lua type which is usable with this function. It’s actually a severe
limitation, since being possible to store any lua object would make the writting of scripts a lot easier.
However, I haven’t yet managed to find a nice solution to this problem. It’s true that lua offers the
possibility to get a reference on any object, but I fear such a method would lead to memory problems -
at least until I or someone else finds a way to handle references in a clean manner.

Please keep in mind that if you want to use a global value such as a boolean telling if the player has the
right to do some special action, then ”u61 register curse” might be a better choice than ”u61 set global”.

10.42.3 Example

The following function decrements the value of a global counter.

ID_COUNTER=8

function decrement_counter()
u61_set_global(ID_COUNTER,u61_get_global()-1)

end

10.43 u61 set item color

10.43.1 Declaration

u61_set_item_color(i,color)

• Arguments: the index and color of the square.

• Return values: none.

• Rights: block write

10.43.2 Description

Modifies the color of a square in the block.

10.44. U61 SET ITEM X 99

The color should normally always be a regular color (ie between 0 and 7), since having an empty square
in a block does not really make any sense.

10.43.3 Example

The following example sets all the squares of the block to the given color.

function set_color(color)
local i

i = u61_get_nb_items()-1
while i>=0 do

u61_set_item_color(i,color)
i=i-1

end
end

10.44 u61 set item x

10.44.1 Declaration

u61_set_item_x(i,x)

• Arguments: the index of the square, and its x coordinate.

• Return values: none.

• Rights: block write

10.44.2 Description

This function modifies the x coordinate of a square in the block.

Note that the returned coordinate is not absolute. This means that if you want to set the real position
of this square in the map, you’ll need to call the ”u61 get block x” function too.

10.44.3 Example

This function sets the absolute position of a square in the block, ie its position in the map. So wherever
the block may be, calling ”set absolute x(0,0)” will place the first square of the block in the leftmost
column of the map.

function set_absolute_x(i,x)
u61_set_item_x(i,x-u61_get_block_x())

end

100 CHAPTER 10. SCRIPT API REFERENCE

10.45 u61 set item y

Exactly the same as ”u61 set item x”, but x becomes y...

10.46 u61 set preview state

10.46.1 Declaration

u61_set_preview_state(state)

• Arguments: the state for the preview mode (1=on, 0=off).

• Return values: none.

• Rights:

10.46.2 Description

Sets the preview state of the player. The preview is what shows the player what kind of block he will
get next time a block falls.

This function would typically used in a curse, to remove the great help provided by the preview, and
put the player in a difficult position.

10.46.3 Example

This example sets the preview mode to false if the score is greater than 100000. It assumes that any
player capable of getting such a high score is good enough to play without a preview.

function disable_preview_for_good_players()
if u61_get_score()>100000 then

u61_set_preview_state(0)
end

end

10.47 u61 set score

10.47.1 Declaration

u61_set_score(score)

• Arguments: the new score.

• Return values: none.

• Rights: map write.

10.48. U61 SET SQUARE COLOR 101

10.47.2 Description

This function updates the current score.

You’ll have to remember that scores should not exceed 999.999, so that they can fit on 6 digits. However,
if you exceed this limit, the value will be truncated to 999.999 anyway.

10.47.3 Example

The following example doubles the score of the player.

function double_score()
u61_set_score(u61_get_score()*2)

end

10.48 u61 set square color

10.48.1 Declaration

u61_set_square_color(x,y,color)

• Arguments: the coordinates of a square, and its color.

• Return values: none.

• Rights: map write.

10.48.2 Description

This function sets the color of a square in the map. The possible values for color are:

• -1 if the square is to be disabled.

• 0-7 if one whishes to put a colored square in this location.

Any call with an invalid color (lower than 0 or greater than 7) will result in setting the color to -1. The
question is: ”why should the game be limited to 8 colors?”. well, in fact, I had to fix a limited number
of colors, since theme creation would have been too complex with a flexible number of colors. Indeed,
you would have risked to get a 16-color based script with an 8-color based theme. And then you can’t
play since you can not distinguish all types of squares. So I had to set up a limit. I chose 8 and think
it’s a good compromise between rich gameplay and easyness of theme creation.

In the scripts and themes I have created, I have tried to respect the following rules:

• Colors 0-6 are standard colors for blocks.

• Color 7 is a special color, used for squares that are generated by curses and which in a general
manner don’t come with standard blocks. In the ”classic” theme, theses are the grey squares.

However, this is just a convention, and you can bypass it. Still, players might find the game more
consistent if you respect it,

102 CHAPTER 10. SCRIPT API REFERENCE

10.48.3 Example

This example moves all the squares from the current block to the map. This is what is done before the
”user match pattern” function is called. However, you should never need such a function - it’s only an
example - since this work is automatically done by the C++ core engine.

function block_to_map()
local i
local x
local y
local color

i = u61_get_nb_items()-1
while i>=0 do

x=u61_get_item_x(i)+u61_get_block_x(i)
y=u61_get_item_y(i)+u61_get_block_y(i)
color=u61_get_item_color(i)
u61_set_square_color(x,y,color)
i=i-1

end
u61_clear_block()

end

Chapter 11

Script library reference

11.1 Introduction

The library functions are Lua functions I have created and they are used by the scripts which are
distributed with U61.

Basically, you could create your own set of rules from scratch, by filling user callbacks with pure calls
to the core API. I honestly think it’s too bad not to re-use some of the work I’ve already done. So a
more reasonnable approach would be, in my opinion, to take an existing script and modify it until it
fits your need. And this section’s goal is to provide a documentation on what I have programmed my
own scripts.

Basically, this section has 2 goals:

• Give an overview of what alreayd exists, and where to find it. For instance, if you want to modify
a curse in the ”classic” set of rules, you might find here in which file this curse is coded, and what
resources it uses.

• Set up some coding guidelines. Of course since U61 is GPL’ed, you can modify the code the way
you want. However, experience shows that no project can survive without a minimum of rules.
Most of the rules I usein scripting for U61 are based on common sense and should not surprise
anyone.

If you look in the source package, you’ll find 2 subdirectories: ”library” and ”package”:

• ”library” contains most of the code, which is split in several modules, each ”.lua” file being one
of these modules.

• ”package” defines the user callbacks. Each package requires functions from the library. The idea
is that you can create multiples packages which rely on the same library modules. This way, when
a library module gets some bug-fix or improvement, all the packages that uses it can benefit from
the update.

103

104 CHAPTER 11. SCRIPT LIBRARY REFERENCE

11.2 Coding guidelines

11.2.1 Why?

If you code new scripts for U61, and want them included in the main U61 release, I’d really appreciate
that you respect some basic rules, which should make the code easier to maintain. This is not to forbid
you anything and should not endanger your freedom (remember the game is GPL’ed) but without a
minimum of organization, I’m pretty sure it will be impossible to maintain an important database of
scripts. And I’d just love it if zillions of Lua scripts for U61 could be available on the net.

11.2.2 Files

I never build complete U61 rules within a single file. The method I use is to create many little files and
then cat them together. Of course if you are trying new features, it might be usefull to take an existing
script, for instance ”classic.lua”, and edit it directly. And if you want to share this script with other
people, you can put it on ftp for download without even asking me. BTW, if you do that, a good idea
would be to rename the script. Indeed, in a network game, clients can automatically save the server
script on their hard drive, and they might get confused if there are 33 different ”classic.lua” scripts. So
”booby-classic5.lua” would certainly be a much better file name.

But if you write some script and want me to include it in U61’s main distribution, then it will truely
make things easier for me if you use the method I used. If you want to look how I have set up my
scripts, please look in the ”script” folder of the source package.

As of today, if I ever get enough contributed scripts, this is what I’ll do:

• Original and well done scripts will be included in the main distribution, that’s to say they’ll be
added to the current scripts, and will use the ”library-package” structure.

• Any other other script, as long as it works (no Lua errors, game launchable), will go in a ”u61-
contrib” package which will contain raw scripts, saved as is.

Of course, as I already mentionned, this is not limitative, if you want to make your own U61 distribution
you can do it, as long as it’s still GPL’ed. However I’m ready to collect scripts and coordinate the whole
project, so you’re free to accept my offer or not 8-)

11.2.3 Functions

Functions should always be prefixed with the name of the file they are in. This applies to all functions
which are defined in the ”library” directory. This way, there should never be any conflict between
function names. Basically:

• Script callback functions are prefixed with ”user ”.

• Script API functions are prefixed with ”u61 ”.

• Script library functions are prefixed with ”filename ”. So a function which is defined in ”super-
curse.lua” could be name ”supercurse hello world” for instance. BTW, this implies there should
not be any ” ” in file names, so that it easier to figure out where the filename ends.

11.3. MODULES 105

11.2.4 Constants

Global constants should always be prefixed with ”ID ”. As of today, there are 2 types of constants in
U61:

• Curse indexes. They are prefixed by ”ID CURSE ”.

• Global indexes. They are prefixed by ”ID GLOBAL ”.

11.3 Modules

11.3.1 What’s this?

Since I do not have the time to document all the script library functions in detail, I have decided to
provide (at least) a list of the different modules available, and give a short description of what they do.
If you want to know more about them, read the code!

11.3.2 antedote.lua

Contains the code for the ”ANTEDOTE” curse, which gives an antedote to the player.

11.3.3 bigx.lua

Contains the code for the ”BUGX” curse. The curse replaces the current block by a big X shape.

11.3.4 boost.lua

Contains the code for the ”BOOST” curse, which makes the blocks fall very fast for a few seconds.

11.3.5 clear.lua

Contains the code for the ”CLEAR” curse. This curse clears the map, ie removes all the squares.

11.3.6 color.lua

Contains function to match color patterns, such as aligned squares of the same color.

11.3.7 colored.lua

Contains code to generate colored bars, as in the ”vertical” set of rules.

106 CHAPTER 11. SCRIPT LIBRARY REFERENCE

11.3.8 connected.lua

Contains a powerfull - but yet the code is ugly 8-} - match function, which search any tetramino,
pentamino, hexamino. Well, in fact it just recognizes any sequence of adjacent squares of the same
color.

11.3.9 drop.lua

Contains the code for the ”DROP” curse, which forces the block to be dropped.

11.3.10 cycle.lua

Contains some functions to shift the colors of the block. This can be an alternative to geometrical
rotations when the rules are heavily based on colors.

11.3.11 fiftytwo.lua

Contains the code for the ”FIFTYTWO” curse. When affected by this curse, the user will only get ”5”
and ”2” like tetraminos.

11.3.12 goofy.lua

Contains the code for the ”GOOFY” curse. This curse inverts the left and right commands.

11.3.13 haha.lua

Contains the code for the ”HAHA” curse. This curse writes ”HA HA” in the map.

11.3.14 holedline.lua

Contains the code for the ”HOLEDLINE” curse. This curse adds a line with a missing square at the
bottom of the map.

11.3.15 line.lua

Contains the code to match a line pattern. This means that it detects whenever there’s a completed
horizontal line of squares, of any color.

11.3.16 metamorphose.lua

Contains the code for the ”METAMORPHOSE” curse. It changes the current block to another block.

11.3. MODULES 107

11.3.17 mixedline.lua

Contains the code for the ”MIXEDLINE” curse. It adds a colored line at the bottom of the map.

11.3.18 morecolors.lua

Contains the code for the ”MORECOLORS” curse. This curse causes some functions to use 7 colors
instead of 6, which can sometimes make the game harder.

11.3.19 nohands.lua

Contains the code for the ”NOHANDS” curse. This curse disables the control of the block, like if
keyboard was disabled.

11.3.20 onlybars.lua

Contains the code for the ”ONLYBARS” curse. This curse is a friendly one: it gives the player vertical
bars for a given time, which makes the game easier.

11.3.21 rotation.lua

Contains some functions to perform geometrical rotations.

11.3.22 shuffle.lua

Contains the code for the ”SHUFFLE” curse. This curse shuffles the map so that evrything gets messy.

11.3.23 sides.lua

Contains the code for the ”SIDES” curse. This curse moves the block to the right or left of the map.

11.3.24 split.lua

Contains the code to ”split” a block as it lands. It is used for instance in the ”user land” callback in
the ”couple” set of rules.

11.3.25 stairs.lua

Contains the code for the ”STAIRS” curse. This curse draws stairs on the map.

11.3.26 tetramino.lua

Contains the code to generate tetraminos. Tetraminos are blocked formed of 4 squares.

108 CHAPTER 11. SCRIPT LIBRARY REFERENCE

11.3.27 topdown.lua

Contains the code for the ”TOPDOWN” curse, which inverts the map, ie puts the blocks that were at
the bottom on top.

11.3.28 topholedline.lua

Contains the code for the ”TOPHOLEDLINE” curse, which puts 2 lines with holes in them at the top
of the map.

11.3.29 translation.lua

Contains some functions to perform translations of the block without calling 2 API functions (a ”get”
and a ”set”).

11.3.30 unstable.lua

Contains the code for the ”UNSTABLE” curse which makes the map unstable. Contributed by Jimmy
Kaplowitz.

11.3.31 utils.lua

Contains various utility fonctions, which are not linked to any peculiar curse or set of rules.

11.3.32 wind.lua

Contains the code for the ”WIND” curse. This curse causes the block to move on the left on a regular
basis.

11.4 Constants

11.4.1 What’s this?

This section describes the constants used in the scripts. As you can see, these constants are all defined
in capitals, and I used the ”ID ” prefix for all of them. I suggest you do the same if you add some, it
should keep things simpler 8-)

I won’t describe how these constants work in detail, I just give the name of the constants and their
value. Please do not assume that, for instance, ID CURSE GOOFY is equal to 1, for these values may
change some day. The right method when you need a new constant is to pickup a free number, assign
it to a variable with a readable name, and then always use this variable.

11.4.2 Curses

• 0 : ID CURSE ANTEDOTE

11.4. CONSTANTS 109

• 1 : ID CURSE HOLEDLINE

• 2 : ID CURSE GOOFY

• 3 : ID CURSE CLEAR

• 4 : ID CURSE SHUFFLE

• 5 : ID CURSE WIND

• 6 : ID CURSE FIFTYONE

• 7 : ID CURSE BIGX

• 8 : ID CURSE MIXEDLINE

• 9 : ID CURSE MORECOLORS

• 10 : ID CURSE BOOST

• 11 : ID CURSE DROP

• 12 : ID CURSE TOPDOWN

• 13 : ID CURSE TOPHOLEDLINE

• 14 : ID CURSE STAIRS

• 15 : ID CURSE HAHA

• 16 : ID CURSE NOHANDS

• 17 : ID CURSE METAMORPHOSE

• 18 : ID CURSE SIDES

• 19 : ID CURSE ONLYBARS

• 20 : ID CURSE UNSTABLE

11.4.3 Globals

• 0 : ID GLOBAL WIND COUNTER

• 1 : ID GLOBAL WIND BLOCK X

110 CHAPTER 11. SCRIPT LIBRARY REFERENCE

Chapter 12

Known bugs

12.1 Major bugs

12.1.1 Client hangs when server is unavailable

When connecting to an unavailable and/or inexisting server, U61 might freeze. This is because the
”connect” function (form the low-level communication layer) blocks and does not return until the server
is found.

12.1.2 Game slows down and freezes

This is due to some inperfections in event handling. What happens is that the game core spends more
time displaying things than processing events. Therefore there’s a growing time gap between what’s
displayed and what’s being calculated internally, at an event level. And the situation gets worse and
worse as the display gets slower since the engine has to anticipate many frames. So the game chokes to
death... I’m trying to find a compromise between real-time constraints and performance issues.

12.2 Minor bugs

12.2.1 When connecting on a server, the game seems to choke

Well, this is I hope only a temporary behavior, which should be changed in the future. The point is
that when a client connects itself on a server, it gets a whole history of what has been happening on
the server, and it can take quite a time to process.

12.2.2 Win32 event dispatcher received WM QUIT

You might get this message if you run U61 in windowed mode under Windows and close the application
by clicking the standard ”cross” which is in the top-right corner of the window.

111

112 CHAPTER 12. KNOWN BUGS

12.2.3 Problems starting a network game

If you compile the game with the ”official” ClanLib-0.5.0 release, you might be unable to start network
games under GNU/Linux, with the server complaining that it can’t bind itself correctly. This is due to
a very minor bug in ClanLib which has been corrected now, however you shouldn’t use CVS snapshots of
ClanLib to compile U61. Instead, you should use my home made http://www.ufoot.org/archive/ClanLib-
0.5.0-for-u61-1.0.0.tar.gz release of ClanLib, which is slightly modified so that this bug does not occur
anymore.

12.2.4 Unable to type dots and other weird characters

Due to some limitations in key handling in ClanLib, you might get trouble trying to type characters
such as ”.” or ”-”. This is very annoying since you need them to type ip addresses and/or machine
names. Still, there’s a workaround for ”.”, which is usually the most annoying character: simply press
the space bar on your keyboard and it will enter ”.” instead of ” ” if you are editing a server name.

12.2.5 The numpad keys won’t work

Again, this is due to the fact that ClanLib is still under heavy developpement. I’ll try and do my best
so that this bug is fixed some day, since it is very important for U61 that all the keys work correctly.

Chapter 13

Frequently Asked Questions

13.1 Why is the game called U61?

In fact, when I first started this project, I had called it ”Tetr61s”. This was because the game was at
first supposed to be quite close to Tetris(c) and there’s a letter in Russian which is pronounced ”i” (like
in ”tetris”) and when you write it down it looks like you have written 61.

Since the Tetris Company (http://www.tetris.com) claims to have a look-and-feel copyright on Tetris(c),
and sues independant game programmers who program Tetris(c) like games, I could not call the game
Tetr61s, nor make a plain Tetris(c) clone. So I decided to start a new project, more general, and
change the name. So ”U” is because my nickname is ”U-Foot” and ”61” is because it is the successor
of ”Tetr61s”.

13.2 Can I copy the game?

Yes, since the game is Free Software (free as in speech), protected by the GPL (GNU General Public
License). You should have received a copy of the GPL with the game. For more informations on the
GPL, check http://www.gnu.org.

13.3 Why did you use ClanLib instead of SDL?

SDL starts being a quite mature library, it’s widespread, present in most GNU/Linux distributions,
and used by professionnals such as Loki. Therefore, one might wonder why I chose ClanLib instead,
knowing that it’s much harder to install and also less common library than SDL.

I chose ClanLib because is a high-level programming library, and provides much more than SDL. Its
main drawback is that it’s still under developpement and therefore API changes occur a bit too often
for me. But its big advantage is that it provides tons of usefull functions, and has a very clean design.
I also like the idea that ClanLib is developped by independant programmers, just like me.

113

114 CHAPTER 13. FREQUENTLY ASKED QUESTIONS

13.4 Why did you code yet another Tetris(c) clone?

There are 2 answers to this question:

• If you really think U61 is a Tetris(c) clone, then you probably have not really played U61. Try and
play with different set of rules using the ”Game options” -> ”Rules” menu, and play with friends
- 3 or 4 players starts being fun... And don’t miss the ”special square” which is represented by a
black and white ”?” in the default theme.

• Of course I could have decided to tweak an existing game such as Tetrinet or Quadra instead of
starting a new developpement from scratch, but I believe the final result would have been less
flexible, and... ...I really enjoy programming 8-)

Chapter 14

Copying

U61 is another block based game.

Copyright (C) 2000-2002 Christian Mauduit (ufoot@ufoot.org)

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

115

