
 
 
 
 

Integration: A General Procedure 
 

Daniel Talagrand 
 
 

Abstract: An effective strategy is here presented for solving problems in integration, 
targeted to first year calculus students already familiar with basic notions of calculus and 
anti-derivatives. 
 
 
 
1 Introduction 
 

If a function f is continuous over the interval[ ]ba, , then the function g defined as 
in (1.1) below, is continuous over the same interval, differentiable on ( )ba, , and 

)()(' xfxg =  by the fundamental theorem of calculus. 
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One can therefore easily integrate basic elementary functions by finding or using 
known anti-derivatives. In numerous instances however, this is insufficient, and 
additiona l procedures are required. 

Standard methods can be followed to evaluate an integral. Some of these tactics 
will be presented in this paper, including u-substitution, integration by reduction and 
partial fractions, and trigonometric substitution. An appendix is provided for quick 
referencing of common derivatives and integral forms. 
 
NOTICE: 
 Before beginning complex and time-consuming procedures, it is often worth 
checking for easier alternative routes, such as using algebraic manipulations or 
substitution by known identities, to simplify the integral We give such an example in  
(1.2) below. 
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2 U-Substitution 
 
 Integrals of composition or products of functions can often be evaluated through a 
technique named u-substitution. The underlying principle of this modus operandi relies 
on the substitution rule for definite (2.1) and indefinite (2.2) integrals. 
 Let u = g(x), g a differentiable function with a range of[ ]ba, , and f a function 
continuous on [ ]ba, . Then: 
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 It is important to note that dx  and du can be operated after an integral as if they 
were differentials. 
 

U-substitution is used most often to replace functions that are a parameter of 
another function, denominators, or generally vicious terms. (2.3) is such an example , 
where an “inner” function is substituted. Note that generally for u-substitution to work, 
the derivative of u must be able to “absorb” and cancel out the other non substituted 
variable. 
 

Given  ∫ + dxxx 354 )1( , we wish to substitute the “inner” function, that is, set 
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3 Integration by reduction 
 
 If f and g are differentiable functions, then through the product rule for 
differentiation, we obtain 
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Using the substitution rule, we get 
 
    ∫∫ −= vduuvudv                   (3.2) 

 
 When choosing u and dv , you must be sure that you are able to integrate dv, and 
that the term ∫vdu  is easier to compute than the original integral. This often occurs when 

u is simplified by differentiation. Integration by reduction is often used when the 
integrand is a product of disparate functions, as in example (3.3) below. 
 
 Given the integrand ∫ xdxx cos , let xu = , and xdxdv cos= . By using formula 
(3.2) we then obtain 
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4 Trigonometric substitution 
 
 By using the substitution rule backwards, and given a one-to-one function )(tg , 
we can define inverse substitution as the following: 
 
    ∫∫ = dttgtgfdxxf )())(()( '    (4.1) 
 
 In this situation, trigonometric functions can be used if we restrict their domain 
such that they remain one-to-one functions. Combined with trigonometric identities 
(Appendix 2), this process can be an invaluable tool. 
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term to ta cos . However, considering the constrained domain, we can further simplify 
the expression to  ta cos . 
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5 Integration by partial fractions 
 
 A polynomial P of degree n is a function where the leading coefficient is not zero 
( 0≠na ), such that 
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 Let f be a rational function with degree n. We can express f in terms of 
polynomials P and Q 
 

     
)(
)(

)(
xQ
xP

xf =     (5.2) 

 
 Integration by partial fractions involves decomposing proper rational functions 
into a sum of simpler rational functions. When encountering an improper fraction, one 
must use polynomial division to obtain a sum of a polynomial and a proper fraction.  That 
is, if f is an improper fraction (explicitly )deg()deg( QP ≥ ), through polynomial division 

in [ ]xΖ  we express f as the following 
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 Thus obtaining a remainder R, such that )deg()deg( QR < . 

We now express 
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 as a sum of partial fractions, obtaining an expression of the form: 
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 If Q(x) is a product of distinct linear factors, that is, 
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Then there exist constants nCCC ..., 21 , such that: 
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 If Q(x) is a product of linear factors, with some not distinct, that is , 
m

ii bxa )( +  appears in the factorization, where 1>m , then the partial fraction form for the 
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 If Q(x) has a factor cbxax ++2 , where 042 <− acb , then, in addition to the 

partial fractions for the linear factors of Q(x), there would also be 
cbcax
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, where C 

and B are constants.  
 
 
 If Q(x) has a factor mcbxax )( 2 ++  where 1>m , then addition to the other partial 
fractions, there would also be:  
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 Once the proper fraction is rewritten as a sum of partial fractions, each term, or 
group of terms, can be integrated individually. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
Appendix 1: Common integral forms 
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Appendix 2: Important trigonometric identities 
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