Firebird 3.0 DeveloperOs Guide

Denis Simonov

Version 1.1, 27 June 2020

Preface

Author of the written material and creator of the sample project on five
development platforms, originally as a series of magazine articles: Denis
Simonov

Translation of original Russian text to English: Dmitry Borodin (MegaTranslations Ltd)
Editor of the translated text: Helen Borrie

Copyright © 2017-2020 Firebird Project and all contributing authors, under the Public
Documentation License Version 1.0 . Please refer to the License Notice in the Appendix

This volume consists of chapters that walk through the development of a

simple application for several language platforms, notably Delphi, Microsoft
Entity Framework and MVC.NET (OModel-View-ControllerO) for web applications,
PHP and Java with the Spring framework. It is hoped that the work will grow in

time, with contributions from authors using other stacks with Firebird.

https://www.firebirdsql.org/manual/pdl.html
https://www.firebirdsql.org/manual/pdl.html

Table of Contents

Table of Contents

1. About the Firebird DeveloperOs Guide: for Firebird 3.0

1.1. About the Author
1.1.1. TranslationE
1.1.2. E and More Translation

1.2. Acknowledgments

2. The examples.fdb Database

2.1. Database Creation Script
2.1.1. Database Aliases
2.2. Creating the Database Objects
2.2.1. Domains
2.2.2. Primary Tables
2.2.3. Secondary Tables
2.2.4. Stored Procedures
2.2.5. Roles and Privileges for Users
2.3. Saving and Running the Script
2.4. Loading Test Data
. Developing Firebird Applications in Delphi
3.1. Starting a Project
3.2. TFDConnection Component
3.3. Path to the Client Library
3.3.1. Developing for Embedded Applications
3.4. Connection parameters
3.4.1. Connection Parameters in a Configuration File
3.4.2. Connecting to the database
3.5. Working with Transactions
3.5.1. TFDTransaction Component
3.6. Datasets
3.6.1. TFDQuery Component
3.6.2. TFDUpdateSQL component
3.7. TFDCommand component
3.7.1. Types of Command
3.8. Creating the Primary Modules
3.8.1. The Read-only Transaction
3.8.2. The Read/Write Transaction
3.8.3. Configuring the Customer Module for Editing
3.8.4. Implementing the Customer Module
3.8.5. Using a RETURNING Clause to Acquire an Autoinc Value
3.9. Creating a Secondary Module

© o o » o » b &

U v i1 2 2 2 D> DD DLW W W W W WwWHDMOWBOMOMDOMDDOMDOBDOMDODEPE R RPRPERER
o M P © © O O O U1 N 0 N W W N P © © W 0w 0 0w N 0o U N w =k O O

Table of Contents

3.9.1. The Transactions for Invoice Data
3.9.2. A Filter for the Data
3.9.3. Configuring the Module
3.9.4. Doing the Work
3.9.5. The Invoice Details
3.10. The Result
3.11. Conclusion
3.12. Source Code
. Developing Firebird Applications with Microsoft Entity Framework
4.1. Methods of Interacting with a Database
4.2. Setting Up for Firebird in Visual Studio 2015
4.2.1. The Installation Process
4.3. Creating a Project
4.3.1. Adding Packages to the Project
4.4, Creating an Entity Data Model (EDM)
4.4.1. The EDM Files
4.5, Creating a User Interface
4.5.1. Getting a Context
4.6. Working with Data
4.6.1. LINQ Extension Methods
4.7. Secondary Modules
4.7.1. Filtering Data
4.7.2. Loading the Invoice Data
4.7.3. Showing the Invoice Lines
4.7.4. Working with Stored Procedures
4.7.5. Showing Products for Selection
4.8. Working with Transactions
4.9. The Result
4.10. Source Code
. Creating Web Applications in Entity Framework with MVC
5.1. The .NET Frameworks
5.2. The ASP.NET MVC Platform
5.2.1. Model-View-Controller Interaction
5.3. Software Stack
5.3.1. Preparing Visual Studio 2015 for Firebird Work
5.4. Creating a Project
5.4.1. Structure of the Project
5.4.2. Adding the Missing Packages
5.5. Creating an EDM
5.6. Creating a User Interface

5.6.1. Creating the Controller for the Customer Interface

56
56
56
58
63
70
70
A1
72
g2
72
73
16
76
78
85
88
89
90
91
99
100
100
105
107
110
112
115
415
116
116
116
116
417
417
117
119
120
122
124
124

Table of Contents

5.7. Adapting the Controller to jqGrid 126
5.7.1. The Attribute ValidateAntiforgeryToken 130
5.8. Bundles 132
5.9. Views 133
5.10. Creating a Ul for Secondary Modules 138
5.10.1. Controllers for Invoices 138
5.10.2. Views for Invoices 147
5.10.3. Dialog Boxes for Invoices 151
5.11. Authentication 161
5.11.1. Infrastructure for Authentication 163
5.12. Authorizing Access to Controller Methods 176
5.13. Source Code 177
. Developing Web Applications with PHP and Firebird 178
6.1. Interfacing PHP and Firebird 178
6.1.1. PHP Drivers for Firebird 178
6.1.2. Comparing the Drivers 190
6.2. Choosing a Framework for Building a Web Application 191
6.3. Installing Laravel 192
6.3.1. Installing Composer 192
6.3.2. Installing Laravel 193
6.4. Creating a Project 193
6.4.1. Our ProjectOs Structure 193
6.4.2. Configuration 194
6.5. Creating Models 196
6.5.1. A Tool for Model-making 196
6.5.2. Invoice Items Model 200
6.5.3. How Laravel Manages Data 203
6.6. Transactions 204
6.7. Creating Controllers and Configuring Routing 205
6.7.1. Using Controllers to Route Requests 206
6.7.2. A Customer Controller 206
6.7.3. A Product Controller 212
6.7.4. A Controller for Invoices 214
6.7.5. Changing the Routes 219
6.8. The Result 220
6.8.1. Source Code 221

. Creating an Application with JOOQ and Spring MVC 222
7.1. Organising the Folder Structure 222
7.2. Coding the Configuration 229
7.3. Start-up Code"N"Weblnitializer 231
7.4. Generating classes for jJOOQ 231

Table of Contents

7.4.1. jO0Q Classes 231
7.5. Dependency Injection 233
7.5.1. Configuring IoC Containers for Dependency Injection 233
7.6. Creating SQL Queries Using jOOQ 238
7.6.1. The jOOQ DSL 238
7.6.2. Named and Unnamed Parameters 241
7.6.3. Returning Values from SELECT Queries 243
7.6.4. Other Types of Queries 243
7.6.5. Stored Procedures with jOOQ 244
7.7. Working with Transactions 245
7.7.1. Explicit Transactions 245
7.8. Writing the Application Code 247
7.9. Creating the Primary Modules 253
7.9.1. CustomerManager Class 255
7.9.2. Customer Controller Class 258
7.10. Creating Secondary Modules 269
7.10.1. Invoice ltems 273
7.10.2. InvoiceManager Class 275
7.10.3. Invoice Controller Class 278
7.10.4. Displaying the Invoices 286
7.11. The Result 305
7.11.1. Source Code 307
Appendix A: License notice 308
Appendix B: Document History 309

Chapter 1. About the Firebird DeveloperOs Guide: for Firebird 3.0

Chapter 1. About the Firebird DeveloperOs
Guide: for Firebird 3.0

This volume consists of chapters that walk through the development of a simple application for
several language platforms, notably Delphi, Microsoft Entity Framework and MVC.NET (OModel-
View-ControllerO) for web applications, PHP and Java with the Spring framework. It is hoped that
the work will grow in time, with contributions from authors using other stacks with Firebird.

1.1. About the Author

Denis SimonovE

1.1.1. TranslationE

Development of the original Russian version was sponsored by IBSurgeon and Moscow Exchange
Bank. A crowd-funding campaign was launched by the Firebird Foundation in 2017 to fund the
translation into English to provide this document as the foundation for translation by Firebird
Project document writers into other languages.

The campaign succeeded in raising enough to get the process under way.

1.1.2. E and More Translation

Once the DocBook source appears in GitHub, we hope the trusty translators will start making
versions in German, Japanese, ltalian, French, Portuguese, Spanish, Czech. Certainly, we never have
enough translators so please, you Firebirders who have English as a second language, do consider
translating some chapters into your first language.

1.2. Acknowledgments

We acknowledge these contributions of sponsors and donors with gratitude and thank you all for
stepping up.

Sponsors and Other Donors

Sponsors of the Russian Languageversion of this Guide

¥ Moscow Exchange (Russia)

Moscow Exchange is the largest exchange holding in Russia and Eastern Europe, founded on
December 19, 2011, through the consolidation of the MICEX (founded in 1992) and RTS (founded in
1995) exchange groups. Moscow Exchange ranks among the worldOs top 20 exchanges by trading
in bonds and by the total capitalization of shares traded, as well as among the 10 largest exchange
platforms for trading derivatives.

¥ IBSurgeon (ibase.ru) (Russia)

https://www.moex.com
https://www.ib-aid.com
https://ibase.ru

Chapter 1. About the Firebird DeveloperOs Guide: for Firebird 3.0

Technical support and developer of administrator tools for the Firebird DBMS.

Sponsors of the Translation Project

¥ Firebird Developers' Day contributors, 2017

(Brazil)

¥ Syntess Software BV (Netherlands)

Other Donors

Listed below are the names of companies and individuals whose cash contributions covered the
costs for translation into English, editing of the raw, translated text and conversion of the whole
into the Firebird ProjectOs standard DocBook 4 documentation source format.

Peter Lee (Australia)

Transdata GmbH (Germany)
Francis Moore (U.K.)

Massimilliano Coros

Aparecido Silva

Hartmuth Prifer (Germany)
Myles Wakeham (U.S.A.)

Roknic Dusan

Jean-Marc Couret

Guiseppe Minutillo (Italy)

Ivan Cruz

Paolo Sciarrini (Italy)

Gerdus van Zyl (South Africa)
Ralf Stegemann

Juan Carlos Ramirez

Cserna Zsombor

Jose Antonio Amate Belchi

Marknadsinformation i Sverige
AB (Sweden)

Doug Chamberlin (U.S.A)
Laurent Guétin (Burkina Faso)

Robert Firl

Andrew Kipcharsky (Russian
Federation)

Martin Mutiku
Mark Rotteveel (Netherlands)

Chong Ray

Nilson Kenji Aguena

Artur Henneberg

James Batson

Antonis Tsourinakis (Greece)
Michele Denys

Shaymon Gracia Campos
Alexander K. Bowie

Jozo Leko

Michele Giordano

Thomas M. Conrad (U.S.A))

Francis Mullan (South Africa)
Juan Antonio Mendoza Gil

Roland van Morckhoven
(Netherlands)

Deon van Niekerk

Martin Koditz (Germany)
Pal Lillejord

Solucionalia Consultores
Auditores, S.L. (Spain)

Gabor Boros

Chris Mathews (U.S.A))

Kjell Rilbe (Sweden)
Arkadiusz Wolanski (Poland)
Michael Trowe

Alessandro Marcellini

Alberto Fornes Llodra

Juergen Bachsteffel (Germany)

Vasily Vasilov

https://www.firebirddevelopersday.com.br/fdd/14fdd_donors.html
https://www.syntess.nl

Chapter 2. The examples.fdb Database

Chapter 2. The examples.fdb Database

Before we explore the process of creating applications in various programming languages, we will
walk through the creation and preparation of the database that is used as the back-end to all of the
sample projects.

The applications work with a database based on the model illustrated in this diagram:

INVOICE INVOICE_LINE
NVOICE_ID INTEGER INVOICE_LINE_ID INTEGER
CUSTOMER_ID INTEGER o NVOICE_D INTEGER
INVOICE_DATE TIMESTAMP PRODUCT I INTEGER
TOTAL_SALE NUMERIC(15,2) QUANTITY INTEGER
PAYED SMALLINT SALE_PRICE NUMERIC(15,2)
CUSTOMER -
CUSTOMER_ID INTEGER RoDICT D TEcER
NANE VARCHAR(GD) NAME VARCHAR{100)
ADDRESS VARCHAR(250) PRICE NUMERIC(15,2)
ZIPCODE CHAR(10) DESCRIFTION BLOB SUB_TYPE 1 SEGMENT SIZE 80

Figure 1. Model of the examples.fdb database

Disclaimer

This chapter does not attempt to provide a tutorial about database design or SQL
syntax. The model is made as simple as possible to avoid cluttering the application
development techniques with topics about database modeling and development.
We hope some readers might be enlightened by our approach to maintaining
interrelated data using stored procedures. The scripts are all here for you to refer

to as you work your way through the projects.

The requirements for your real-life projects are undoubtedly different from and
much more complicated than those for our example projects.

2.1. Database Creation Script

The tool used here to create the database from a script is isgl, that is installed with all the other
executables in every Firebird server installation. You could use any other administration tool for
Firebird, such as FlameRobin, SQLLY Studio, IBExpert or others.

We will assume that you are working in Windows. Obviously, the formats of path names will differ
on other file systems (Linux, Apple Mac, etc.) but the isgl tool works the same on all platforms.

Run isqgl and enter the following script after the SQL>prompt appears:

Chapter 2. The examples.fdb Database

CREATE DATABASE 'localhost:D:\fbdata\2.5\examples.fdb'
USER 'SYSDBA' PASSWORD 'masterkey"
PAGE_SIZE 8192 DEFAULT CHARACTER SET UTFS;

The straight single quotes around the user and password arguments are not
optional in Firebird 2.5 and lower versions because, in the CREATE DATABAgtax,
both are strings.

In Firebird 3, the rules changed. User names became identifiers and no longer

require single quotes. They can be made case-sensitive by enclosing the name in
DOUBLE quotes, so you need to be aware of how that user is registered in the
security database. Passwords are still strings.

Quotes in the statement are not interchangeable with curly quotes, angle quotes or
any other kind of quotes.

The user whose name and password are cited in the CREATE DATABASE statement becomes the
owner of the database and has full access to all metadata objects. It is not essential that SYSDBA be

the owner of a database. Any user can be the owner, which has the same access as SYSDBA in this
database.

The actively supported versions of Firebird support the following page sizes: 4096, 8192 and 16384.
The page size of 8192 is good for most cases.

The optional DEFAULT CHARACTERCcEESe specifies the default character set for string data types.
Character sets are applied to the CHAR/ARCHARI BLOB SUB_TYPE TH4#a types. You can study the
list of available language encodings in an Appendix to the Firebird Language Reference manual. All
up-to-date programming languages support UTF8, so we choose this encoding.

Now we can exit the isgl session by typing the following command:

EXIT;

2.1.1. Database Aliases

Databases are accessed locally and remotely by their physical file path on the server. Before you
start to use a database, it is useful and wise to register an alias for its file path and to use the alias
for all connections. It saves typing and, to some degree, it offers a little extra security from snoopers
by obscuring the physical location of your database file in the connection string.

In Firebird 2.5, the alias of a database is registered in the aliases.conf file as follows:

examples = D:\fbdata\2.5\examples.fdb

In Firebird 3.0, the alias of a database is registered in the databases.conf file. Along with the alias
for the database, some database-level parameters can be configured there: page cache size, the size

https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref25/firebird-25-language-reference.html#fblangref25-appx06-charsets

Chapter 2. The examples.fdb Database

of RAM for sorting and several others, e.g.,

examples = D:\fbdata\3.0\examples.fdb

{
E DefaultDbCachePages = 16K

E TempCacheLimit = 512M
}

You can use an alias even before the database exists. It is valid to substitute the full
file path with the alias inthe =~ CREATE DATABAGEmMent.

2.2. Creating the Database Objects

Now let us create a script for building the database objects.

2.2.1. Domains

First, we define some domains that we will use in column definitions.

CREATE DOMAIN D_BOOLEAN AS
SMALLINT
CHECK (VALUE IN (0, 1));

COMMENT ON DOMAIN D_BOOLEAN IS
'‘Boolean type. 0 - FALSE, 1- TRUE';

CREATE DOMAIN D_MONEY AS
NUMERIC(15,2);

CREATE DOMAIN D_ZIPCODE AS
CHAR(10) CHARACTER SET UTF8
CHECK (TRIM(TRAILING FROM VALUE) SIMILAR TO '[0-9]+);

COMMENT ON DOMAIN D_ZIPCODE IS
'Zip code’;

BOOLEAype

In Firebird 3.0, there is a native = BOOLEA#pe. Some drivers do not support it, due to its relatively
recent appearance in FirebirdOs SQL lexicon. With that in mind, our applications will be built on a
database that will work with either Firebird 2.5 or Firebird 3.0.

Before Firebird 3, servers could connect clients to databases that were created
under older Firebird versions. Firebird 3 can connect only to databases that were
created on or restored under Firebird 3.

10

Chapter 2. The examples.fdb Database

2.2.2. Primary Tables

Now let us proceed to the primary tables. The first will be the CUSTOMIE®Ie. We will create a
sequence (a generator) for its primary key and a corresponding trigger for implementing it as an
auto-incrementing column. We will do the same for each of the tables.

CREATE GENERATOR GEN_CUSTOMER_ID;

CREATE TABLE CUSTOMER (

E CUSTOMER_ID INTEGER NOT NULL,

E NAME VARCHAR(60) NOT NULL,

E ADDRESS VARCHAR(250),

E ZIPCODE D_ZIPCODE,

E PHONE VARCHAR(14),

E CONSTRAINT PK_CUSTOMER PRIMARY KEY (CUSTOMER_ID)

);
SET TERM 7 :

CREATE OR ALTER TRIGGER CUSTOMER_BI FOR CUSTOMER
ACTIVE BEFORE INSERT POSITION O

AS

BEGIN

E IF (NEW.CUSTOMER_ID IS NULL) THEN

E NEW.CUSTOMER_ID = NEXT VALUE FOR GEN_CUSTOMER_ID;
END

N

SET TERM ;

COMMENT ON TABLE CUSTOMER IS
'Customers’;

COMMENT ON COLUMN CUSTOMER.CUSTOMER_ID IS
'Customer Id";

COMMENT ON COLUMN CUSTOMER.NAME IS
‘Name";

COMMENT ON COLUMN CUSTOMER.ADDRESS IS
'Address’;

COMMENT ON COLUMN CUSTOMER.ZIPCODE IS
'Zip Code";

COMMENT ON COLUMN CUSTOMER.PHONE IS
'Phone’;

11

Chapter 2. The examples.fdb Database

¥ In Firebird 3.0, you can use IDENTITYcolumns as auto-incremental fields. The
script for creating the table would then be as follows:

CREATE TABLE CUSTOMER (

E CUSTOMER_ID INTEGER GENERATED BY DEFAULT AS IDENTITY,
E NAME VARCHAR(60) NOT NULL,

E ADDRESS VARCHAR(250),

E ZIPCODE D_ZIPCODE,

E PHONE VARCHAR(14),

E CONSTRAINT PK_CUSTOMER PRIMARY KEY (CUSTOMER_ID)

)i

¥ In Firebird 3.0, you need the USAGHrivilege to use a sequence (generator), so
you will have to add the following line to the script:

GRANT USAGE ON SEQUENCE GEN_CUSTOMER_ID TO TRIGGER CUSTOMER_BI,

Now we construct a script for creating the PRODU@GDIe:

12

Chapter 2. The examples.fdb Database

CREATE GENERATOR GEN_PRODUCT_ID;

CREATE TABLE PRODUCT (

E PRODUCT_ID INTEGER NOT NULL,

E NAME VARCHAR(100) NOT NULL,

E PRICE D_MONEY NOT NULL,

E DESCRIPTION BLOB SUB_TYPE 1 SEGMENT SIZE 80,

E CONSTRAINT PK_PRODUCT PRIMARY KEY (PRODUCT_ID)

);
SET TERM ~:

CREATE OR ALTER TRIGGER PRODUCT_BI FOR PRODUCT
ACTIVE BEFORE INSERT POSITION 0

AS

BEGIN

E IF (NEW.PRODUCT_ID IS NULL) THEN

E NEW.PRODUCT_ID = NEXT VALUE FOR GEN_PRODUCT _ID;
END

N

SET TERM ;»

COMMENT ON TABLE PRODUCT IS
'Goods";

COMMENT ON COLUMN PRODUCT.PRODUCT_ID IS
'Product Id";

COMMENT ON COLUMN PRODUCT.NAME IS
‘Name";

COMMENT ON COLUMN PRODUCT.PRICE IS
'Price";

COMMENT ON COLUMN PRODUCT.DESCRIPTION IS

'‘Description’;

In Firebird 3.0, you need to add the command for granting the USAGHrivilege for a
sequence (generator) to the script:

GRANT USAGE ON SEQUENCE GEN_PRODUCT_ID TO TRIGGER PRODUCT_BiI;

2.2.3. Secondary Tables

The script for creating the INVOICHable:

13

Chapter 2. The examples.fdb Database

CREATE GENERATOR GEN_INVOICE_ID;

CREATE TABLE INVOICE (

E INVOICE_ID INTEGER NOT NULL,

E CUSTOMER_ID INTEGER NOT NULL,

E INVOICE_DATE TIMESTAMP,

E TOTAL_SALE D_MONEY,

E PAID D_BOOLEAN DEFAULT 0 NOT NULL,

E CONSTRAINT PK_INVOICE PRIMARY KEY (INVOICE_ID)

);

ALTER TABLE INVOICE ADD CONSTRAINT FK_INVOCE_CUSTOMER
FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER (CUSTOMER_ID);

CREATE INDEX INVOICE_IDX_DATE ON INVOICE (INVOICE_DATE);
SET TERM #;

CREATE OR ALTER TRIGGER INVOICE_BI FOR INVOICE
ACTIVE BEFORE INSERT POSITION 0

AS

BEGIN

E IF (NEW.INVOICE_ID IS NULL) THEN

E NEW.INVOICE_ID = GEN_ID(GEN_INVOICE_ID, 1);
END

N

SET TERM ;»

COMMENT ON TABLE INVOICE IS
‘Invoices';

COMMENT ON COLUMN INVOICE.INVOICE_ID IS
'Invoice number’;

COMMENT ON COLUMN INVOICE.CUSTOMER_ID IS
'Customer Id";

COMMENT ON COLUMN INVOICE.INVOICE_DATE IS
'The date of issuance invoices'’;

COMMENT ON COLUMN INVOICE.TOTAL_SALE IS
‘Total sum";

COMMENT ON COLUMN INVOICE.PAID IS
'Paid’;

The INVOICE_DAT@®Ilumn is indexed because we will be filtering invoices by date to enable the
records to be selected by a work period that will be application-defined by a start date and an end

14

Chapter 2. The examples.fdb Database

date.

In Firebird 3.0, you need to add the command for granting the USAGHrivilege for a
sequence (generator) to the script:

GRANT USAGE ON SEQUENCE GEN_INVOICE_ID TO TRIGGER INVOICE_BI,

The script for creating the INVOICE_LINEble:

15

Chapter 2. The examples.fdb Database

CREATE GENERATOR GEN_INVOICE_LINE_ID;

CREATE TABLE INVOICE_LINE (

E INVOICE_LINE_ID INTEGER NOT NULL,

E INVOICE_ID INTEGER NOT NULL,

E PRODUCT_ID INTEGER NOT NULL,

E QUANTITY NUMERIC(15,0) NOT NULL,

E SALE_PRICE D_MONEY NOT NULL,

E CONSTRAINT PK_INVOICE_LINE PRIMARY KEY (INVOICE_LINE_ID)

);

ALTER TABLE INVOICE_LINE ADD CONSTRAINT FK_INVOICE_LINE_INVOICE
FOREIGN KEY (INVOICE_ID) REFERENCES INVOICE (INVOICE_ID);

ALTER TABLE INVOICE_LINE ADD CONSTRAINT FK_INVOICE_LINE_PRODUCT
FOREIGN KEY (PRODUCT _ID) REFERENCES PRODUCT (PRODUCT_ID);

SET TERM #;

CREATE OR ALTER TRIGGER INVOICE_LINE_BI FOR INVOICE_LINE
ACTIVE BEFORE INSERT POSITION 0

AS

BEGIN

E IF (NEW.INVOICE_LINE_ID IS NULL) THEN

E NEW.INVOICE_LINE_ID = NEXT VALUE FOR GEN_INVOICE_LINE_ID;
END

N

SET TERM ;»

COMMENT ON TABLE INVOICE_LINE IS
‘Invoice lines";

COMMENT ON COLUMN INVOICE_LINE.INVOICE_LINE_ID IS
‘Invoice line Id’;

COMMENT ON COLUMN INVOICE_LINE.INVOICE_ID IS
'Invoice number";

COMMENT ON COLUMN INVOICE_LINE.PRODUCT_ID IS
'Product Id";

COMMENT ON COLUMN INVOICE_LINE.QUANTITY IS
'‘Quantity’;

COMMENT ON COLUMN INVOICE_LINE.SALE_PRICE IS
'Price";

16

Chapter 2. The examples.fdb Database

In Firebird 3.0, you need to add the command for granting the USAGHrivilege for a
sequence (generator) to the script:

GRANT USAGE ON SEQUENCE GEN_INVOICE_LINE_ID TO TRIGGER INVOICE_LINE_BI,

2.2.4. Stored Procedures

Some parts of the business logic will be implemented by means of stored procedures.

Adding a new invoice

The procedure for adding a new invoice is quite simple:

17

Chapter 2. The examples.fdb Database

SET TERM %,

CREATE OR ALTER PROCEDURE SP_ADD_INVOICE (
E INVOICE_ID INTEGER,

E CUSTOMER_ID INTEGER,

E INVOICE_DATE TIMESTAMP = CURRENT_TIMESTAMP)
AS

BEGIN

E INSERT INTO INVOICE (

E INVOICE_ID,

CUSTOMER_ID,

INVOICE_DATE,

TOTAL_SALE,

PAID

)

VALUES (
:INVOICE_ID,
:CUSTOMER_ID,
:INVOICE_DATE,
0,

0

b [T TP TP TP TP TP TP TP TP TP [T [T1

E)
END

N

SET TERM ;»

COMMENT ON PROCEDURE SP_ADD_INVOICE IS
'‘Adding Invoice’;

COMMENT ON PARAMETER SP_ADD_INVOICE.INVOICE_ID IS
'Invoice number’;

COMMENT ON PARAMETER SP_ADD_INVOICE.CUSTOMER_ID IS
'Customer Id";

COMMENT ON PARAMETER SP_ADD_INVOICE.INVOICE_DATE IS
'Date’;

GRANT INSERT ON INVOICE TO PROCEDURE SP_ADD_INVOICE;

Editing an invoice

The procedure for editing an invoice is a bit more complicated. We will include a rule to block
further editing of an invoice once it is paid. We will create an exception that will be raised if an
attempt is made to modify a paid invoice.

18

Chapter 2. The examples.fdb Database

CREATE EXCEPTION E_INVOICE_ALREADY_PAYED 'Change is impossible, invoice paid.’;

-- The stored procedure for editing an invoice:
SET TERM %,

CREATE OR ALTER PROCEDURE SP_EDIT_INVOICE (
E INVOICE_ID INTEGER,
E CUSTOMER_ID INTEGER,
E INVOICE_DATE TIMESTAMP)
AS
BEGIN
IF (EXISTS(SELECT *
FROM INVOICE
WHERE INVOICE_ID = :INVOICE_ID
AND PAID = 1)) THEN
EXCEPTION E_INVOICE_ALREADY_PAYED:;

T [T [Ty [T [T

E UPDATE INVOICE

E SET CUSTOMER_ID = :CUSTOMER_ID,
E INVOICE_DATE = :INVOICE_DATE

E WHERE INVOICE_ID = :INVOICE_ID;
END

N

SET TERM ;»

COMMENT ON PROCEDURE SP_EDIT_INVOICE IS
'Editing invoice";

COMMENT ON PARAMETER SP_EDIT_INVOICE.INVOICE_ID IS
'Invoice number";

COMMENT ON PARAMETER SP_EDIT_INVOICE.CUSTOMER_ID IS
'Customer Id";

COMMENT ON PARAMETER SP_EDIT_INVOICE.INVOICE_DATE IS
'Date’;

GRANT SELECT,UPDATE ON INVOICE TO PROCEDURE SP_EDIT_INVOICE;

In Firebird 3.0, the USAGHrivilege is required for exceptions, so we need to add the
following line:

GRANT USAGE ON EXCEPTION E_INVOICE_ALREADY_PAYED TO PROCEDURE
SP_EDIT_INVOICE;

19

Chapter 2. The examples.fdb Database
Deleting an invoice

The procedure SP_DELETE_INVOI@#Ecedure checks whether the invoice is paid and raises an
exception if it is:

SET TERM *;

CREATE OR ALTER PROCEDURE SP_DELETE_INVOICE (
E INVOICE_ID INTEGER)
AS
BEGIN
E IF (EXISTS(SELECT * FROM INVOICE
= WHERE INVOICE_ID = :INVOICE_ID
AND PAID = 1)) THEN
EXCEPTION E_INVOICE_ALREADY_PAYED:;

[e m

E DELETE FROM INVOICE WHERE INVOICE_ID = :INVOICE_ID;
END

AN

SET TERM ;»

COMMENT ON PROCEDURE SP_DELETE_INVOICE IS
'Deleting invoices";

GRANT SELECT,DELETE ON INVOICE TO PROCEDURE SP_DELETE_INVOICE;

In Firebird 3.0, the USAGHrivilege is required for exceptions, so we need to add the
following line:

GRANT USAGE ON EXCEPTION E_INVOICE_ALREADY_PAYED TO PROCEDURE
SP_DELETE_INVOICE;

Paying an invoice

We will add one more procedure for paying an invoice:

20

Chapter 2. The examples.fdb Database

SET TERM %,

CREATE OR ALTER PROCEDURE SP_PAY_FOR_INVOICE (
INVOICE_ID INTEGER)
AS
BEGIN
E IF (EXISTS(SELECT *
FROM INVOICE
WHERE INVOICE_ID = :INVOICE_ID
AND PAID = 1)) THEN
EXCEPTION E_INVOICE_ALREADY_PAYED:;
E UPDATE INVOICE
E SET PAID =1
E WHERE INVOICE_ID = :INVOICE_ID;
END

N

T [T [Ty [T

SET TERM ;»

COMMENT ON PROCEDURE SP_PAY_FOR_INVOICE IS
'Payment of invoices";

COMMENT ON PARAMETER SP_PAY_FOR_INVOICE.INVOICE_ID IS
'Invoice number";

GRANT SELECT,UPDATE ON INVOICE TO PROCEDURE SP_PAY_FOR_INVOICE;

In Firebird 3.0, the USAG#Hrivilege is required for exceptions, so we need to add the
following line:

GRANT USAGE ON EXCEPTION E_INVOICE_ALREADY_ PAYED TO PROCEDURE
SP_PAY_FOR_INVOICE;

Invoice Line Items

Procedures for managing invoice items will check whether the invoice is paid and block any
attempt to alter the line items of paid invoices. They will also correct the invoice total according to
the amount of the product sold and its price.

Adding line items

The procedure for adding a line item to an invoice:

SET TERM %,

CREATE OR ALTER PROCEDURE SP_ADD_INVOICE_LINE (
E INVOICE_ID INTEGER,

21

Chapter 2. The examples.fdb Database

E PRODUCT_ID INTEGER,

E QUANTITY INTEGER)

AS

E DECLARE sale_price D_MONEY;
E DECLARE paid D_BOOLEAN;
BEGIN

E SELECT

E paid

E FROM

E invoice

E WHERE

E invoice_id = :invoice_id

E INTO :paid;

E -- It does not allow you to edit already paid invoice.
E IF (paid = 1) THEN
E EXCEPTION E_INVOICE_ALREADY_PAYED;

E SELECT

E price

E FROM

E product

E WHERE

E product_id = :product_id
E INTO :sale_price;

INSERT INTO invoice_line (
E invoice_line_id,

E invoice_id,

E product_id,

E quantity,

E sale_price)

VALUES (

E NEXT VALUE FOR gen_invoice_line_id,
E :invoice_id,

E :product_id,

E :quantity,

E :sale_price);

E -- Increase the amount of the account.
E UPDATE invoice

E SET total_sale = COALESCE(total_sale, 0) + :sale_price * :quantity

E WHERE invoice_id = :invoice_id;
END
N

SET TERM ;»

COMMENT ON PROCEDURE SP_ADD_INVOICE_LINE IS
'‘Adding line invoices';

22

Chapter 2. The examples.fdb Database

COMMENT ON PARAMETER SP_ADD_INVOICE_LINE.INVOICE_ID IS
'Invoice number’;

COMMENT ON PARAMETER SP_ADD_INVOICE_LINE.PRODUCT ID IS
'Product Id";

COMMENT ON PARAMETER SP_ADD_INVOICE_LINE.QUANTITY IS
'‘Quantity’;

GRANT SELECT, UPDATE ON INVOICE TO PROCEDURE SP_ADD_INVOICE_LINE;

GRANT SELECT ON PRODUCT TO PROCEDURE SP_ADD_INVOICE_LINE;

GRANT INSERT ON INVOICE_LINE TO PROCEDURE SP_ADD_INVOICE_LINE;

-- only Firebird 3.0 and above

GRANT USAGE ON EXCEPTION E_INVOICE_ALREADY_PAYED TO PROCEDURE SP_ADD_INVOICE_LII
GRANT USAGE ON SEQUENCE GEN_INVOICE_LINE_ID TO PROCEDURE SP_ADD_INVOICE_LINE;

Editing line items

The procedure for editing an invoice line item:

SET TERM #;

CREATE OR ALTER PROCEDURE SP_EDIT_INVOICE_LINE (
E INVOICE_LINE_ID INTEGER,
E QUANTITY INTEGER)
AS
E DECLARE invoice_id INT;
E DECLARE price D_MONEY;
E DECLARE paid D_BOOLEAN;
BEGIN
E SELECT
product.price,
invoice.invoice _id,
invoice.paid
FROM
invoice_line
E JOIN invoice ON invoice.invoice_id = invoice_line.invoice_id
E JOIN product ON product.product_id = invoice_line.product_id
E WHERE
invoice_line.invoice_line_id = :invoice_line_id
INTO
.price,
;invoice_id,
:paid;

[T T [T [T [T

™ > [Ty mp mp

-- It does not allow you to edit an already paid invoice.
IF (paid = 1) THEN
EXCEPTION E_INVOICE_ALREADY_PAYED;

T T TP

E -- Update price and quantity.

23

Chapter 2. The examples.fdb Database

E UPDATE invoice_line
E SET sale_price = :price,
E quantity = :quantity
E WHERE invoice_line_id = :invoice_line_id;
-- Now update the amount of the account.
MERGE INTO invoice
USING (
SELECT
invoice_id,
SUM(sale_price * quantity) AS total_sale
E FROM invoice_line
E WHERE invoice_id = :invoice_id
E GROUP BY invoice_id) L
E ON invoice.invoice_id = L.invoice_id
E WHEN MATCHED THEN
E UPDATE SET total_sale = L.total_sale;
END

N

[T [T [T [Ty [y [mp

SET TERM ;»

COMMENT ON PROCEDURE SP_EDIT_INVOICE_LINE IS
'Editing invoice line';

COMMENT ON PARAMETER SP_EDIT_INVOICE_LINE.INVOICE_LINE_ID IS
'Invoice line id";

COMMENT ON PARAMETER SP_EDIT_INVOICE_LINE.QUANTITY IS
'‘Quantity’;

GRANT SELECT,UPDATE ON INVOICE_LINE TO PROCEDURE SP_EDIT_INVOICE_LINE;

GRANT SELECT,UPDATE ON INVOICE TO PROCEDURE SP_EDIT_INVOICE_LINE;

GRANT SELECT ON PRODUCT TO PROCEDURE SP_EDIT_INVOICE_LINE;

-- only Firebird 3.0 and above

GRANT USAGE ON EXCEPTION E_INVOICE_ALREADY_PAYED TO PROCEDURE SP_EDIT_INVOICE_LI

Deleting line items

The procedure for deleting an invoice line item from an invoice:

24

Chapter 2. The examples.fdb Database

SET TERM %,

CREATE OR ALTER PROCEDURE SP_DELETE_INVOICE_LINE (
E INVOICE_LINE_ID INTEGER)
AS
E DECLARE invoice_id INT;
E DECLARE price D_MONEY;
E DECLARE quantity INT;
BEGIN
E IF (EXISTS(SELECT *
FROM invoice_line
JOIN invoice ON invoice.invoice_id = invoice_line.invoice_id
WHERE invoice.paid = 1
AND invoice_line.invoice_line_id = :invoice_line_id)) THEN
EXCEPTION E_INVOICE_ALREADY_PAYED;

[T > T [T [T M

E DELETE FROM invoice_line

E WHERE invoice_line.invoice_line_id = :invoice_line_id
E RETURNING invoice_id, quantity, sale_price

E INTO invoice_id, quantity, price;

E -- Reduce the amount of the account.

E UPDATE invoice

E SET total_sale = total_sale - :quantity * :price
E WHERE invoice_id = :invoice_id;

END

N

SET TERM ;»

COMMENT ON PROCEDURE SP_DELETE_INVOICE_LINE IS
'‘Deleting invoice item’;

COMMENT ON PARAMETER SP_DELETE_INVOICE_LINE.INVOICE_LINE_ID IS

'‘Code invoice item’;

Privileges for Procedures

GRANT SELECT,DELETE ON INVOICE_LINE TO PROCEDURE SP_DELETE_INVOICE_LINE;

GRANT SELECT,UPDATE ON INVOICE TO PROCEDURE SP_DELETE_INVOICE_LINE;

-- only Firebird 3.0 and above

GRANT USAGE ON EXCEPTION E_INVOICE_ALREADY_PAYED TO PROCEDURE SP_DELETE_INVOICE

2.2.5. Roles and Privileges for Users

Now we need to create roles and grant the corresponding privileges. We will create two roles:
MANAGERd SUPERUSBRANAGHERI have a limited set of privileges while SUPERUS®HN have access
to practically everything in the database that is used by the project application.

25

Chapter 2. The examples.fdb Database

CREATE ROLE MANAGER;

CREATE ROLE SUPERUSER;

-- The MANAGER role can read any table and use the corresponding procedures

-- to manage invoices:

GRANT SELECT ON CUSTOMER TO MANAGER;

GRANT SELECT ON INVOICE TO MANAGER;

GRANT SELECT ON INVOICE_LINE TO MANAGER,;

GRANT SELECT ON PRODUCT TO MANAGER,;

GRANT EXECUTE ON PROCEDURE SP_ADD_INVOICE TO MANAGER,;

GRANT EXECUTE ON PROCEDURE SP_ADD_INVOICE_LINE TO MANAGER,;
GRANT EXECUTE ON PROCEDURE SP_DELETE_INVOICE TO MANAGER;
GRANT EXECUTE ON PROCEDURE SP_DELETE_INVOICE_LINE TO MANAGER;
GRANT EXECUTE ON PROCEDURE SP_EDIT_INVOICE TO MANAGER;
GRANT EXECUTE ON PROCEDURE SP_EDIT_INVOICE_LINE TO MANAGER,;
GRANT EXECUTE ON PROCEDURE SP_PAY_FOR_INVOICE TO MANAGER;
GRANT USAGE ON SEQUENCE GEN_INVOICE_ID TO MANAGER;

-- The SUPERUSER role can read any table, edit the primary tables directly

-- and use the procedures to manage invoices:

GRANT SELECT, INSERT, UPDATE, DELETE ON CUSTOMER TO SUPERUSER;
GRANT SELECT ON INVOICE TO SUPERUSER,;

GRANT SELECT ON INVOICE_LINE TO SUPERUSER;

GRANT SELECT, INSERT, UPDATE, DELETE ON PRODUCT TO SUPERUSER;
GRANT EXECUTE ON PROCEDURE SP_ADD_INVOICE TO SUPERUSER;
GRANT EXECUTE ON PROCEDURE SP_ADD_INVOICE_LINE TO SUPERUSER,;
GRANT EXECUTE ON PROCEDURE SP_DELETE_INVOICE TO SUPERUSER,;
GRANT EXECUTE ON PROCEDURE SP_DELETE_INVOICE_LINE TO SUPERUSER;
GRANT EXECUTE ON PROCEDURE SP_EDIT_INVOICE TO SUPERUSER,;
GRANT EXECUTE ON PROCEDURE SP_EDIT_INVOICE_LINE TO SUPERUSER,;
GRANT EXECUTE ON PROCEDURE SP_PAY_FOR_INVICE TO SUPERUSER,;
GRANT USAGE ON SEQUENCE GEN_CUSTOMER_ID TO SUPERUSER;
GRANT USAGE ON SEQUENCE GEN_INVOICE_ID TO SUPERUSER;

GRANT USAGE ON SEQUENCE GEN_PRODUCT_ID TO SUPERUSER;

These statements create some users and assign roles to them:

CREATE USER IVAN PASSWORD 'z12a’,
CREATE USER ANNA PASSWORD 'lh67";

GRANT MANAGER TO ANNA,
GRANT MANAGER TO IVAN WITH ADMIN OPTION;
GRANT SUPERUSER TO IVAN;

The user IVANcan assign the MANAGEd#e to other users.

2.3. Saving and Running the Script

Save our script to a text file named examples.sql.

26

Chapter 2. The examples.fdb Database
Now you have three choices: you can

¥ download the ready-made script files using the following links:
I https://github.com/sim1984/example-db_2 5/archive/1.0.zip
! or https://github.com/sim1984/example-db_3_0/archive/1.0.zip
¥ OR run the script examples.sqgl that you just created yourself;
¥ OR download the ready-made database, complete with sample data. Links are provided at the

end of this chapter.

Now, to run our script in the database created earlier:

isql -user sysdba -password masterkey "localhost:examples"
E -i "d:\examples-db\examples.sql"

Do not split this command!

The argument "localhost:examples” uses an alias in place of the file path. It assumes that an alias
named Gexample® actually exists, of course! The -i switch is an abbreviation of -input and its
argument should be the path to the script file you just saved.

2.4. Loading Test Data

Now that the database is created and built, you can populate it with test data. Various tools are
available to help with that. If you prefer not to do it yourself, you can download a copy of the built
database already loaded with the test data we used in the sample projects, from one of the
following links:

¥ db_2 5.zip

¥ or db_3_0.zip

Reminder

A database built by Firebird 2.5 will not be accessible by a Firebird 3 server, nor
vice versa. Make sure you download the correct database for your needs.

27

https://github.com/sim1984/example-db_2_5/archive/1.0.zip
https://github.com/sim1984/example-db_3_0/archive/1.0.zip
https://www.firebirdsql.org/file/documentation/examples/en/fbdevgd30/db_2_5.zip
https://www.firebirdsql.org/file/documentation/examples/en/fbdevgd30/db_3_0.zip

Chapter 3. Developing Firebird Applications in Delphi

Chapter 3. Developing Firebird Applications
In Delphi

This chapter will describe the process of developing applications for Firebird databases with the
FireDac? data access components in the Embarcadero Delphi® XE5 environment. FireDac? is a
standard set of components for accessing various databases in Delphi XE3 and higher versions.

3.1. Starting a Project
Create a new project using File YNew YVCL Forms Application YDeIphi .

Add a new data module using File YNew YOther and selecting Delphi Projects YDeIphi Files Y
Data Module in the wizard. This will be the main data module in our project. It will contain some
instances of global access components that must be accessible to all forms that are intended to

work with data. TFDConnectioris an example of this kind of component.

3.2. TFDConnection Component

The TFDConnectioncomponent provides connectivity to various types of databases. We will specify
an instance of this component in the Connection properties of other FireDac components. The
particular type of the database to which the connection will be established depends on the value of

the DriverNameproperty. To access Firebird, you need to set this property to FB

For the connection to know exactly which access library it should work with, place the
TFBPhysFBDriverLinkcomponent in the main data module. Its ~ VendorLib property enables the path to
the client library to be specified precisely. If it is not specified, the component will attempt to
establish a connection via libraries registered in the system, for example, in system32 which might
not be what you want at all.

3.3. Path to the Client Library

We will place the necessary library in the fbclient folder located in the application folder and use
the following code for the OnCreate event of the data module:

xAppPath := ExtractFileDir(Application.ExeName) + PathDelim;
FDPhysFBDriverLink.VendorLib := xAppPath + 'fbclient’ + PathDelim + ‘fbclient.dll’;

28

Chapter 3. Developing Firebird Applications in Delphi

Important notes about ObitnessO

If you compile a 32-bit application, you should use the 32-bit fbclient.dll library.
For a 64-bit application, it should be the 64-bit library.

Along with the file fbclient.dll , it is advisable to place the following libraries in

the same folder: msvcp80.dil and msver80.dll (for Firebird 2.5) as well as

msvcpl00.dll and msverl00.dil (for Firebird 3.0). These libraries are located either
n in the bin subfolder (Firebird 2.5) or in the root folder of the server (Firebird 3.0).

For the application to show internal firebird errors correctly, it is necessary to
copy the file firebird.msg as well.

¥ For Firebird 2.5 or earlier, the libraries must be one level up from the folder
with the client library, i.e., in the application folder for our purposes.

¥ For Firebird 3, they must be in the same folder as the client library, i.e. in the
fbclient folder.

3.3.1. Developing for Embedded Applications

If you need your application to run without the installed Firebird server, i.e. in the Embedded
mode, for Firebird 2.5 you should replace fbclient.dll with fbembed.dll . Make sure the width of the
CPU register (64-bit or 32-bit) matches the application. If necessary, the name of the library can be
placed in the configuration file of your application.

It is not necessary to change anything for Firebird 3.0, in which the working mode depends on the
connection string and the value of the Providers parameter in the file firebird.conf/databases.conf

TIP

Even if your application is intended to work with Firebird in the Embedded mode,

it is advisable to attach to the full server during development. The reason is that
embedded Firebird runs in the same address space as the application and any
application connecting to a database in embedded mode must be able to obtain
exclusive access to that database. Once that connection succeeds, no other
embedded connections are possible. When you are connected to your database in
the Delphi IDE, the established connection is in DelphiOs application space, thus
preventing your application from being run successfully from the IDE.

Note, Firebird 3 embedded still requires exclusive access if the installed full server
is in Super (Superserver) mode.

3.4. Connection parameters

The Paramsproperty of the TFDConnectioncomponent contains the database connection parameters
(username, password, connection character set, etc.). If you invoke the TFDConnectionproperty
editor by double-clicking on the component, you will see that those properties have been filled
automatically. The property set depends on the database type.

29

Chapter 3. Developing Firebird Applications in Delphi

() FireDAC Connection Editor - [FDConnection] O >
H Select driver or select connection definition name to override, then setup parameters
' Definition | Options Info SQL Script
Driver ID: |F8 ~|
Connection Definition Name: | w |
Test Wizard Revert To Defaults Help
Parameter Value Default
Pooled False False
Database D:\examples. fdb
User_Mame sysdba
Fassword
MonitorBy
QSauthent Mo
Protocol TCPIP {oea
SErver localhost
SQLDialect 3 3
RoleMame
Characterset LTF3
ExtendedMetadata Falze Fale
CreateDatabase Mo
PageSize 4096 95
IBAdvanced
(84 Cancel

Figure 2. TFDConnection property editor

Table 1. TFDConnection component main properties

Property Purpose
Pooled Whether a connection pool is used
Database The path to the database or its alias as defined in the aliases.conf
configuration file (orin databases.conf) of the Firebird server
User_Name Firebird user name. Not used if OSAuthents True.
Password Firebird password. Not used if ~ OSAuthents True.
OSAuthent Whether operating system authentication is used

30

Chapter 3. Developing Firebird Applications in Delphi

Property Purpose

Protocol Connection protocol. Possible values:

¥ Local"N"local protocol
¥ NetBEUIN"named pipes, WNET

¥ SPXN"This property is for NovellOs IPX/SPX protocol, which has never
been supported in Firebird

¥ TCPIPN"TCP/IP

Server Server name or its IP address. If the server is run on a non-standard port,
you also need to append the port number after a slash, e.g.,
localhost/3051

SQLDialect SQL Dialect. It must match that of the database

RoleName Role name, if required

CharacterSet Connection character set name

Additional Properties:

Connected Used to manage the database connection or check the connection status.
This property must be set to True in order for the wizards of other
FireDac components to work. If your application needs to request
authentication data, it is important to remember to reset this property to
False before compiling your application.

LoginPrompt Whether to request the username and password during a connection
attempt
Transaction The TFDTransactioncomponent that will be used as default to conduct

various TFDConnectiortransactions. If this property is not explicitly
specified, TFDConnectiorwill create its own TFDTransactioninstance. Its
parameters can be configured in the TxOptions property.

UpdateTransaction The TFDTransactioncomponent that is to be used as default for the
UpdateTransaction property of TFDQuergomponents, unless explicitly
specified for the dataset. If this property is not specified explicitly, the
value from the Transaction property of the connection will be used,
unless it is explicitly specified for the dataset.

3.4.1. Connection Parameters in a Configuration File

Since the connection parameters, except for the username and password and possibly the role, are
usually common to all instances the application, we will read them from the configuration file:

31

Chapter 3. Developing Firebird Applications in Delphi

xIniFile := TIniFile.Create(xAppPath + 'config.ini');

try

E xIniFile.ReadSectionValues(‘connection’, FDConnection.Params);
finally

E xIniFile.Free;

end;

A Typical Configuration File

Typically, the config.ini file contains the following lines:

[connection]
DriverID=FB
Protocol=TCPIP
Server=localhost/3051
Database=examples
OSAuthent=No
RoleName=
CharacterSet=UTF8

You can get the contents of the connection section by copying the contents of the Paramsproperty of
the TFDConnectiorcomponent after the wizard finishes its work.

Actually, the common settings are usually located in
%AppData%\Manufacturer\AppNarard are saved to that location by the application
installation software. However, it is convenient for the configuration file to be
stored somewhere closer during the development, for instance, in the application
folder.

Note that if your application is installed into the Program Files folder and the
configuration file is located there as well, it is likely that the file will be virtualized

in Program Data and issues could arise with modifying it and reading the new
settings subsequently.

3.4.2. Connecting to the database

To connect to the database, it is necessary to change the Connectedproperty of the TFDConnection
component to True or call the Openmethod. You can use the Openmethod to pass the username and
password as parameters.

A Little Modification

We will replace the standard database connection dialog box in our application and allow users to
make three mistakes while entering the authentication information. After three failures, the
application will be closed.

To implement it, we will write the following code in the OnCreateevent handler of the main data

32

Chapter 3. Developing Firebird Applications in Delphi

module.

/I After three unsuccessful login attempts, we close the application.
xLoginCount := 0;

xLoginPromptDlg := TLoginPromptForm.Create(Self);

while (xLoginCount < MAX_LOGIN_COUNT) and

E (not FDConnection.Connected) do

E if xLoginPromptDIlg.ShowModal = mrOK then

E FDConnection.Open(
E xLoginPromptDlg.UserName, xLoginPromptDIg.Password)
E else

E xLoginCount := MAX_LOGIN_COUNT;
E except

E on E: Exception do
E begin

E Inc(xLoginCount);

E Application.ShowException(E);
E end

E end;

end;

xLoginPromptDlg.Free;

if not FDConnection.Connected then
E Halt;

3.5. Working with Transactions

The Firebird client allows any operations to be made only in the context of a transaction so, if you
manage to access data without explicitly calling TFDTransaction.StartTransaction , it means that it
was called automatically somewhere deep in FireDac. It is highly recommended to avoid this
practice. For applications to work correctly with databases, it is advisable to manage transactions
manually, which means starting and committing them or rolling them back with explicit calls.

The TFDTransactioncomponent is used to manage transactions explicitly.

3.5.1. TFDTransaction Component

TFDTransaction has three methods for managing a transaction explicitly: StartTransaction , Commit
and Rollback. The following table summarises the properties available to configure this component.

Table 2. TFDTransaction component main properties
Property Purpose

Connection Reference to the FDConnectioncomponent

33

Property

Options.AutoCommit

Options.AutoStart
Options.AutoStop

Options.DisconnectActi
on

Options.EnableNested

Options.Isolation

Options.Params

Options.ReadOnly

Chapter 3. Developing Firebird Applications in Delphi

Purpose

Controls the automatic start and end of a transaction, emulating

FirebirdOs own transaction management. The default value is True. See
note (1) below for more details about behaviour if the Autocommitoption
is True.

Controls the automatic start of a transaction. The default value is True.
Controls the automatic end of a transaction. The default value is True.

The action that will be performed when the connection is closed while
the transaction is active. The default value is ~ xdCommitN"the transaction
will be committed. See note (2) below for details of the other options.

Controls nested transactions. The default value is True. Firebird does not
support nested transactions as such but FireDac can emulate them using
savepoints. For more details, see note(3) below.

Specifies the transaction isolation level. It is the most important
transaction property. The default value is xiReadCommitted The other
values that Firebird supports are xiSnapshot and xiUnspecified ; also
xiSerializable , to some degree. For more details about the available
isolation levels, see note (4) below.

Firebird-specific transaction attributes that can be applied to refine the
transaction parameters, overriding attributes applied by the standard
implementation of the selected isolation level. For the attributes that can
be set and the OlegalO combinations, see note (5) below.

Indicates whether it is a read-only transaction. The default value is False.
Setting it to True disables any write activity. Long-running read-only
transactions in READ COMMITT46ation are recommended for activities
that do not change anything in the database because they use fewer
resources and do not interfere with garbage collection.

Note 1: AutoCommit=True

If the value of AutoCommits set to True, FireDAC behaves as follows:

¥ Starts a transaction (if required) before each SQL command and ends the
transaction after the SQL command completes execution

¥ If the command is successfully executed, the transaction will be ended by

COMMIDtherwise, it will be ended by ROLLBACK

¥ If the application calls the StartTransaction method, automatic transaction
management will be disabled until that transaction is ended by Commit or
Rollback.

34

Chapter 3. Developing Firebird Applications in Delphi

Note 2: DisconnectAction

The following values are possible:

xdNone

nothing will be done. The DBMS will perform its default action.

xdCommit

the transaction will be committed

xdRollback

the transaction will be rolled back

Note that, in some other data access components, the default value for the
DisconnectAction property is xdRollback and will need to be set manually with
Firebird to match the FDTransaction setting.

Note 3: EnableNested

If StartTransaction is called from within an active transaction, FireDac will
emulate a nested transaction by creating a savepoint. Unless you are very
confident in the effect of enabling nested transactions, set EnableNestedto False.
With this setting, calling StartTransaction inside the transaction will raise an
exception.

35

Chapter 3. Developing Firebird Applications in Delphi

Note 4: Isolation

FireBird has three isolation levels: READ COMMIT,TERAPSH@DconcurrencyO) and
SNAPSHOT TABLE STABIL(O%onsistencyO, rarely used). FireDac supports some but
not all configurations for READ COMMITT& SNAPSHOIL uses the third level
partially to emulate the SERIALIZABLEolation that Firebird does not support.

xiReadCommitted

the READ COMMITTgeation level. FireDac starts ReadCommitted transactions in
Firebird with the following parameters: read/write, rec_version, nowait

xiSnapshot

the SNAPSH@ncurrency) isolation level. FireDac starts Snapshot transactions
in Firebird with the following parameters: read/write, wait

xiUnspecified
FirebirdOs default isolation level (SNAPSHOWith the following parameters:
read/write, wait

xiSerializable

the SERIALIZABLEolation level. Firebird does not support serializable isolation,
but FireDac emulates it by starting a ~ SNAPSHOT TABLE STABIL(DdonsistencyO)
transaction with the following parameters: read/write, wait.

Other parameters, not supported by Firebird at all, are:

xiDirtyRead
if this is selected (not a good idea!) READ COMMITT#Dbe used instead

xiRepeatableRead
if this is selected, SNAPSH@TII be used instead

36

Chapter 3. Developing Firebird Applications in Delphi

Note 5: Firebird-specific Transaction Attributes

Attributes that can be customised in Options.Params are:

¥read write , the default read mode for all of the options.isolation
selections"N"see note (4) above. Set write off if you want read-only mode.
Alternatively, you can set Options.ReadOnly to True to achieve the same thing.
There is no such thing as a Owrite-onlyO transaction.

¥ read_committed concurrency and consistency are isolation levels.

¥ wait and nowait are conflict resolution settings, determining whether the
transaction is to wait for a conflict to resolve

¥ rec_version and no rec_version provide an option that is applicable only to READ
COMMITTHEiansactions. The default rec_version lets this transaction read the
latest committed version of a record and overwrite it if the transaction ID of
the latest committed version is newer (higher) than the ID of this transaction.
The no rec_version setting will block this transaction from reading the latest
committed version if an update is pending from any other transaction.

Multiple Transactions

Unlike many other DBMSs, Firebird allows as many TFDTransaction objects as you need to associate
with the same connection. In our application, we will use one common read transaction for all
primary and secondary modules and one read/write transaction for each dataset.

We do not want to rely on starting and ending transactions automatically: we want to have full
control. That is why Options.AutoCommit=False Options.AutoStart=False and Options.AutoStop=False
are set in all of our transactions.

3.6. Datasets

The components TFDQueryTFDTable TFDStoredProcand TFDCommaauk the components for working
with data in FireDac. TFDCommaddes not deliver a dataset and, when TFDStoredProc is used with
an executable stored procedure, rather than a selectable one, it does not deliver a dataset, either.

TFDQueryTFDTableand TFDStoredProcare inherited from TFDRdbmsDataSet

Apart from datasets for working with the database directly, FireDac also has the TFDMemTable
component for working with in-memory datasets. It is functionally equivalent to TClientDataSet .

The main component for working with datasets, TFDQuerycan be used for practically any purpose.
The TFDTableand TFDStoredProccomponents are just variants, expanded or reduced to meet
differences in functionality. No more will be said about them and we will not be using them in our
application. If you wish, you can learn about them in the FireDac documentation.

The purpose of a dataset component is to buffer records retrieved by the SELECTstatement,
commonly for displaying in a grid and providing for the current record in the buffer (grid) to be

editable. Unlike the IBX TIBDataSet component, TFDQuerncomponent does not have the properties
RefreshSQL.InsertSQL, UpdateSQland DeleteSQL Instead, a separate TFDUpdateSQibject specifies the

37

Chapter 3. Developing Firebird Applications in Delphi

statement for dataset modifications and the dataset component carries a reference to that
component in its UpdateObject property.

RequestLive Property

Sometimes it is possible to make an FDQueryobject editable without referring,
through the UpdateObject property, to an FDUpdateSQabject that specifies queries
for insert, update and delete. The property UpdateOptions.RequestLive can be set to
True for sets that are naturally updatable and the object will generate the
modification queries for you. However, because this approach puts strict
limitations on the SELEC@uery, it is not always useful to rely on it.

3.6.1. TFDQuery Component

Table 3. TFDQuery component main properties

Property Purpose
Connection Reference to the FDConnectionobject
MasterSource If the dataset is to be used as detail to a master dataset, this property

refers to the data source (TDataSource of the master set

Transaction If specified, refers to the transaction within which the query will be
executed. If not specified, the default transaction for the connection will
be used.

UpdateObject Reference to the FDUpdateSQibject providing for the dataset to be

editable when the SELECguery does not meet the requirements for
automatic generation of modification queries with
UpdateOptions.RequestLive=True.

UpdateTransaction The transaction within which modification queries will be executed. If
the property is not specified the transaction from the Transaction
property of the connection will be used.

UpdateOptions.CheckReq If set to True (the default) FireDac controls the Required property of the

uired corresponding NOT NULiields. If you keep it True and a field with the
Required=Truehas no value assigned to it, an exception will be raised
when the Post method is called. This might not be what you want if a
value is going to be assigned to this field later in BEFORiEggers.

UpdateOptions.EnableDe Specifies whether a record can be deleted from the dataset. If
lete EnableDelete=False, an exception will be raised when the Delete method
is called.

UpdateOptions.Enableln Specifies whether a record can be inserted into the dataset. If
sert Enablelnsert=False , an exception will be raised when the Insert /Append
method is called.

UpdateOptions.EnableUp Specifies whether a record can be edited in the dataset. If
date EnableUpdate=False an exception will be raised when the Edit method is
called.

38

Property

UpdateOptions.FetchGen
eratorPoint

UpdateOptions.Generato
rName

UpdateOptions.ReadOnly

UpdateOptions.RequestL
ive

UpdateOptions.UpdateMo
de

CachedUpdates

SQL

Chapter 3. Developing Firebird Applications in Delphi

Purpose

Controls the moment when the next value is fetched from the generator
specified in the UpdateOptions.GeneratorNameroperty or in the
GeneratorNam@roperty of the auto-incremental field
AutoGenerateValue=arAutolnc. The default is gpDeferred, causing the next
value to be fetched from the generator before a new record is posted in

the database, i.e., during Post or ApplyUpdates For the full set of possible
values, see note (1) below.

The name of the generator from which the next value for an auto-
incremental field is to be fetched.

Specifies whether it is a read-only dataset. The default value is False. If
the value of this property is set to True, the EnableDelete, Enablelnsert
and EnableUpdateproperties will be automatically set to False.

Setting RequestLive to True makes a query editable, if possible. Queries
for insert, update and delete will be generated automatically. This setting
imposes strict limitations on the ~ SELECqjuery. It is supported for
backward compatibility with the ancient BDE and is not recommended.

Controls how to check whether a record has been modified. This property
allows control over possible overwriting of updates in cases where one
user is taking a long time to edit a record while another user has been
editing the same record simultaneously and completes the update earlier.
The default is upWhereKeyOnlyFor information about the available modes,
see note (2) below.

Specifies whether the dataset cache defers changes in the dataset buffer.
If this property is set to True, any changes (Insert /Post, UpdatdPost,
Delete) are saved to a special log and the application must apply them
explicitly by calling the ApplyUpdatesmethod. All changes will be made
within a small period of time and within one short transaction. The

default value of this property is False.

Contains the text of the SQL query. If this property is a SELECStatement,
execute it by calling the Openmethod. Use the Execute or ExecSQfor
executing a statement that does not return a dataset.

39

Chapter 3. Developing Firebird Applications in Delphi

Note 1: UpdateOptions.FetchGeneratorPoint

The property UpdateOptions.FetchGeneratorPoint can take the following values:

gpNone

no value is fetched from the generator

gplmmediate

the next value is fetched from the generator right after the Insert /Append
method is called

gpDeferred
the next value is fetched during Post or ApplyUpdates

40

Chapter 3. Developing Firebird Applications in Delphi

Note 2: UpdateOptions.UpdateMode

The user in a lengthy editing session could be unaware that a record has been
updated one or more times during his editing session, perhaps causing his own
changes to overwrite someone elseOs updates. The UpdateOptions.UpdateMode
property allows a choice of behaviours to lessen or avoid this risk:

upWhereAll

check whether a record exists by its primary key + check all columns for old
values, e.g.,

update table set ...
where pkfield = :old_ pkfield and
E client_name = :old_client_name and

E info = :old_info ...

With upWhereAllset, the update query will change content in a record only if the
record has not been edited by anyone else since our transaction started. It is
especially important if there are dependencies between values in columns, such
as minimum and maximum wages, etc.

upWhereChanged

check whether a record exists by its primary key + check for old values only in
the columns being edited.

update table set ...
where pkfield = :old_pkfield and
E client_name = :old_client

upWhereKeyOnly

check whether a record exists by its primary key. This check corresponds to the
automatically generated UpdateSQluery.

To avoid (or handle) update conflicts in a multi-user environment, typically you

need to add WHEREonditions manually. You would need a similar tactic, of
course, to implement a process that emulates upWhereChangedemoving the
unused column modifications from the update table set, leaving in the update

list only the columns that are actually modified. The update query could
otherwise overwrite someone elseOs updates of this record.

Obviously, the UpdateSQheeds to be created dynamically.

If you want to specify the settings for detecting update conflicts individually for
each field, you can use the ProviderFlags property for each field.

41

Chapter 3. Developing Firebird Applications in Delphi

3.6.2. TFDUpdateSQL component

The TFDUpdateSQtomponent enables you to refine or redefine the SQL command that Delphi
generates automatically for updating a dataset. It can be used to update an FDQueryobject, an
FDTableobject or data underlying an ~ FDStoredProcobject.

Using TFDUpdateSQk optional for TFDQueryand TFDTablebecause these components can generate
statements automatically, that can sometimes be used for posting updates from a dataset to the
database. For updating a dataset that is delivered into an FDStoredProc object, use of the
TFDUpdateSQis not optional. The developer must figure out a statement that will result in the
desired updates. If only one table is updated, a direct DML statement might be sufficient. Where
multiple tables are affected, an executable stored procedure will be unavoidable.

We recommend that you always use it, even in the simplest cases, to give yourself full control over
the queries that are requested from your application.

TFDUpdateSQL Properties

To specify the SQL DML statements at design time, double-click on the TFDUpdateSQomponent in
your data module to open the property editor.

Each component has its own design-time property editor. For multiple data-aware
editors to run, FireDac needs an active connection to the database
(TFDConnection.Connected = Trug and a transaction in the autostart mode
(TFDTransaction.Options.AutoStart = True) for each one.

n Design-time settings could interfere with the way the application is intended to
work. For instance, the user is supposed to log in to the program using his
username, but the FDConnectionobject connects to the database as SYSDBA.

It is advisable to check the Connectedproperty of the FDConnectionobject and reset
it each time you use the data-aware editors. AutoStart will have to be enabled and
disabled for a read-only transaction as well.

42

Chapter 3. Developing Firebird Applications in Delphi

(D) FireDAC Update SQL Editor - [FDUpdateGoads]

H‘ Select table, describe it and generate Update 5QL's

Generate Options SQL Commands

Table Mame

product

Describe From DB

| RevertToDefaults | |

Generate SOL

Key Fields

Updating Fields

PRODUCT ID

PRODUCT_ID

Refreshing Fields
FRODUCT_ID

MAME MAME MAME
PRICE PRICE PRICE
DESCRIFTION DESCRIPTION DESCRIFTION

X

Cancel

Figure 3. TFDUpdateSQL property editor

You can use the Generate tab to make writing Insert/Update/Delete/Refresh queries easier for
yourself. Select the table to be updated, its key fields, the fields to be updated and the fields that will
be reread after the update and click the Generate SQL button to have Delphi generate the queries
automatically. You will be switched to the SQL Commands tab where you can correct each query.

43

Chapter 3. Developing Firebird Applications in Delphi

(D) FireDAC Update SQL Editor - [FDUpdateGoads] O >

H Select table, describe it and generate Update 5QL's

Generate Options SQL Commands

‘Insert * | Modify * Delete * Lock Unlock FetchRow *

INSERT INTC PRODUCT

({NAME, PRICE, DESCRIETICHM)

VALUES (:MNEW MAME, :-NEW DPRICE, :NEW DESCRIPTION)
RETURNING PRODUCT ID, NMaME, PRICE, DESCRIFTICON

(8] 4 Cancel

Figure 4. TFDUpdateSQL SQL command editor

Since product_id is not included in Updating Fields , it is absent from the generated
Insert query. It is assumed that this column is filled automatically by a generator

call in a BEFORE INSERigger or, from Firebird 3.0 forward, it could be an IDENTITY
column. When a value is fetched from the generator for this column at the server

side, it is recommended to add the PRODUCT_¢blumn manually to the RETURNING
clause of the INSERTBtatement.

The Options Tab

The Options tab contains some properties that can affect the process of query generation. These
properties are not related to the = TFDUpdateSQiomponent itself. Rather, for convenience, they are
references to the UpdateOptions properties of the dataset that has the current ~ TFDUpdateSQipecified
in its UpdateObject property.

Table 4. TFDUpdateSQL component main properties

Property Purpose
Connection Reference to the TFDConnectiorcomponent
DeleteSQL The SQL query for deleting a record
FetchRowSQL The SQL query for returning a current record after it has been updated or

inserted"N"ORefreshSQLO

InsertSQL The SQL query for inserting a record

44

Chapter 3. Developing Firebird Applications in Delphi

Property Purpose
LockSQL The SQL query for locking a current record. (FOR UPDATE WITH LOCK
ModifySQL The SQL query for modifying a record
UnlockSQL The SQL query for unlocking a current record. It is not used in Firebird.

Notice that, because the TFDUpdateSQiomponent does not execute modification queries directly, it
has no Transaction property. It acts as a replacement for queries automatically generated in the
parent TFDRdbmsDataSet

3.7. TFDCommand component

The TFDCommaecmmponent is used to execute SQL queries. It is not descended from TDataSetso it is
valid to use only for executing SQL queries that do not return datasets.

Table 5. TFDCommand component main properties

Property Purpose
Connection Reference to the TFDConnectiorcomponent
Transaction The transaction within which the SQL command will be executed
CommandKind Type of command. The types are described in the section below.
CommandText SQL query text

3.7.1. Types of Command

Usually, the command type is determined automatically from the text of the SQL statement. The
following values are available for the property TFDCommand.Commandiiater for cases where the
internal parser might be unable to make correct, unambiguous assumptions based on the
statement text alone:

skUnknown

unknown. Tells the internal parser to determine the command type automatically from its
analysis of the text of the command

skStartTransaction

a command for starting a transaction

skCommit

a command for ending and committing a transaction

skRollback

a command for ending and rolling back a transaction

skCreate

a CREATE Ecommand for creating a new metadata object

45

Chapter 3. Developing Firebird Applications in Delphi

skAlter

an ALTER Ecommand for altering a metadata object

skDrop

a DROP Ecommand for deleting a metadata object

skSelect

a SELEC@ommand for retrieving data

skSelectForLock
a SELECT EWITH LOCkommand for locking the selected rows

skinsert

an INSERT E command for inserting a new record

skUpdate
an UPDATE Ecommand for modifying records

skDelete

a DELETE Ecommand for deleting records

skMerge
a MERGE INTO Eommand

skExecute
an EXECUTE PROCEBUEERECUTE BLO®Khmand

skStoredProc

a stored procedure call

skStoredProcNoCrs

a call to a stored procedure that does not return a cursor

skStoredProcWithCrs

a call to a stored procedure that returns a cursor

3.8. Creating the Primary Modules

We will create two primary modules in our application: a product module and a customer module.

Each primary dataset is displayed on a form by means of a TDBGridgrid and a toolbar with buttons.
The business logic of working with the dataset will be located in a separate DataModule that
contains a TDataSourcedata source, a TFDQuerydataset, and two TFDTransaction transactions, one

read-only and one read/write.

As our model for creating datasets, we will create the Customer dataset on the dCustomers

datamodule:

46

Chapter 3. Developing Firebird Applications in Delphi

Main | dCustomers | Customers

Figure 5. dCustomers datamodule

On tabbing to the Customers form, this is the initial view. The DataSource component is not visible
on the form because it is located in the dCustomers datamodule.

Main] dCustomers [Customers l

+ /X Cl¥

@
\ch stomers.DataSource

) HE .

=
ActionList

Figure 6. Customers form, initial view

We have placed the TFDQuergomponent in the dCustomersdatamodule and named it qryCustomers

47

Chapter 3. Developing Firebird Applications in Delphi

This dataset will be referred to in the DataSet property of the DataSourcedata source in DCustomers
We specify the read-only transaction trRead in the Transaction property, the trWritetransaction in
the UpdateTransaction property and, for the Connection property, the connection located in the main
data module. We populate the SQLproperty with the following query:

SELECT

E customer_id,

E name,

E address,

E zipcode,

E phone

FROM

E customer
ORDER BY name

3.8.1. The Read-only Transaction

The trRead read transaction is started when the dataset form is displayed (the OnActivate event) and
is ended when the form is closed. READ COMMITTHEDIation level (Options.Isolation =
xiReadCommittedl is usually used to show data in grids because it allows the transaction to see
changes committed in the database by other users by just repeating queries (rereading data)
without the transaction being restarted.

Since this transaction is used only to read data, we set the Options.ReadOnly property to True. Thus,
our transaction will have the following parameters: read read_committed rec_version .

Why?

A transaction with exactly these parameters can remain open in Firebird as long
as necessary (days, weeks, months) without locking other transactions or affecting
the accumulation of garbage in the database because, with these parameters, a
transaction is started on the server as committed.

We set the property Options.DisconnectAction to xdCommit which perfectly fits a read-only
transaction. Finally, the read transaction will have the following properties:

Options.AutoStart = False
Options.AutoCommit = False
Options.AutoStop = False
Options.DisconnectAction = xdCommit
Options.lIsolations = xiReadCommitted
Options.ReadOnly = True

48

Chapter 3. Developing Firebird Applications in Delphi

Although we do not discuss reporting in this manual, be aware that you should not
use such a transaction for reports, especially if they use several queries in

n sequence. A transaction with READ COMMIT T&dhation will see all new committed
changes when rereading data. The recommended configuration for reports is a
short read-only transaction with SNAPSHOTsolation (Options.Isolation =

xiSnapshot and Options.ReadOnly= True).

3.8.2. The Read/Write Transaction

The write transaction trWrite that we use for our FDUpdateSQtbject must be as short as possible to
prevent the oldest active transaction from getting OstuckO and inhibiting garbage collection. High

levels of uncollected garbage will lead to lower performance. Since the write transaction is very

short, we can use the SNAPSHG@Sblation level. The default value of the Options.DisconnectAction
property, xdCommitis not appropriate for write transactions, so it should be set to xdRollback. We
will not rely on starting and ending transactions automatically. Instead, we will start and end a
transaction explicitly. Thus, our transaction should have the following properties:

Options.AutoStart = False
Options.AutoCommit = False
Options.AutoStop = False
Options.DisconnectAction = xdRollback
Options.lsolations = xiSnapshot
Options.ReadOnly = False

SNAPSHOT vs READ COMMITTED Isolation

It is not absolutely necessary to specify SNAPSHOi$olation for simple INSERTUPDATBELETE
operations. However, if a table has complex triggers or a stored procedure is executed instead of a

simple INSERMPDATBELETHuery, it is advisable to use SNAPSHQOIhe reason is that READ COMMITTED
isolation does not ensure the read consistency of the statement within one transaction, since the
SELECS$tatement in this isolation can return data that were committed to the database after the

transaction began. In principle, = SNAPSH®&®lation is recommended for short-running transactions.

3.8.3. Configuring the Customer Module for Editing

In this section, we will configure some properties in the gryCustomerand FDUpdateCustomegbjects to
make the Customerdataset editable.

The TFDUpdateSQL Settings

To make the dataset editable, the InsertSQL, ModifySQI.DeleteSQLand FetchRowSQproperties should
be specified in the FDUpdateSQabject that is linked to the dataset. The wizard can generate these
statements but it may be necessary to correct some things afterwards. For example, you can add a
RETURNINGuse, remove some columns from the update list or cancel an automatically generated
stored procedure call entirely.

49

Chapter 3. Developing Firebird Applications in Delphi

InsertSQL

INSERT INTO customer (
E customer _id,

E name,

E address,

E zipcode,

E phone)

VALUES (:new_customer _id,
E :new_name,
:new_address,
‘new_zipcode,
‘new_phone)

> e e m

ModifySQL

UPDATE customer

SET name = :new_name,

E address = :new_address,

E zipcode = :new_zipcode,

E phone = :new_phone

WHERE (customer_id = :old_customer_id)

DeleteSQL

DELETE FROM customer
WHERE (customer_id = :old_customer_id)

FetchRowSQL

SELECT

E customer _id,

E name,

E address,

E zipcode,

E phone

FROM

E customer

WHERE customer_id = :old_customer _id

Getting a Generator Value

In this project, we will get the value from the generator before making an insert into the table. To
enable that, specify the following values for the properties of the TFDQuergomponent:

50

Chapter 3. Developing Firebird Applications in Delphi

UpdateOptions.GeneratorName = GEN_CUSTOMER_ID

and

UpdateOptions.AutolncFields = CUSTOMER_ID

This method works only for autoinc fields that are populated by explicit generators

| (sequences). It is not applicable to the IDENTITYtype of autoinc key introduced in
Firebird 3.0.
Another way to get the value from the generator is to return it after the INSERTs executed by means

of a RETURNIN@&wuse. This method, which works for IDENTIT Yfields as well, will be shown later, in
the topic Using a RETURNING Clause to Acquire an Autoinc Value

3.8.4. Implementing the Customer Module

Modal forms are often used to add a new record or to edit an existing one. Once the modal form is
closed by the mrOKresult, the changes are posted to the database. Database-aware visual
components are usually used to create this kind of form. These components enable you to display
the values of some fields from the current record and immediately accept the userOs changes in the
corresponding fields if the dataset is in the Insert/Edit mode, i.e. before Post.

The only way to switch the dataset to Insert/Edit mode is by starting a write transaction. So, if
somebody opens a form for adding a new record and leaves for a lunch break, we will have an
active transaction hanging until the user comes back from lunch and closes the form. This
uncommitted edit can inhibit garbage collection, which will reduce performance. There are two
ways to solve this problem:

1. Use the CachedUpdatesnode, which enables the transaction to be active just for a very short
period (to be exact, just for the time it takes for the changes to be applied to the database).

2. Give up using visual components that are data-aware. This approach requires some additional
effort from you to activate the data source and pass user input to it.

We will show how both methods are implemented. The first method is much more convenient to
use. LetOs examine the code for editing a customer record:

51

Chapter 3. Developing Firebird Applications in Delphi

procedure TCustomerForm.actEditRecordExecute(Sender: TObject);

var

E xEditorForm: TEditCustomerForm;

begin

E xEditorForm := TEditCustomerForm.Create(Self);
E try

E xEditorForm.OnClose := CustomerEditorClose:
E xEditorForm.DataSource := Customers.DataSource;
E xEditorForm.Caption := 'Edit customer’;
E Customers.Edit;
xEditorForm.ShowModal;
finally
E xEditorForm.Free;
E end;
end;
The Customers property is initiated in the OnCreate event:
procedure TCustomerForm.FormCreate(Sender: TObject);
begin
E FCustomers := TDMCustomers.Create(Self);
E DBGrid.DataSource := Customers.DataSource;
end;

We set the CachedUpdatesnode for the dataset in the Edit method of the dCustomersmodule before
switching it to the edit mode:

procedure TdmCustomers.Edit;

begin

E gryCustomer.CachedUpdates := True;
E gryCustomer.Edit;

end;

The logic of handling the process of editing and adding a record is implemented in the OnClose
event handler for the modal edit form:

52

Chapter 3. Developing Firebird Applications in Delphi

procedure TCustomerForm.CustomerEditorClose(Sender: TObject;
E var Action: TCloseAction);

begin

E if TEditCustomerForm(Sender).ModalResult <> mrOK then
E begin

E Customers.Cancel;

E Action := caFree;

E Exit;

E end;

E try

E Customers.Post;

E Customers.Save;

E Action := caFree;

E except

E on E: Exception do

E begin

E Application.ShowException(E);

E //1t does not close the window give the user correct the error
E Action := caNone;

E end;

E end;

end;

To understand the internal processes, we can study the code for the
of the dCustomerdata module:

53

Cancel, Post and Savemethods

Chapter 3. Developing Firebird Applications in Delphi

procedure TdmCustomers.Cancel;

begin

E gryCustomer.Cancel;

E gryCustomer.CancelUpdates;

E gryCustomer.CachedUpdates := False;
end;

procedure TdmCustomers.Post;
begin

E gryCustomer.Post;

end,;

procedure TdmCustomers.Save;
begin
E // We do everything in a short transaction

E // In CachedUpdates mode an error does not interrupt the running code.

E // The ApplyUpdates method returns the number of errors.
E // The error can be obtained from the property RowError
E try

E trWrite.StartTransaction;

E if (QryCustomer.ApplyUpdates = 0) then

E begin

E qgryCustomer.CommitUpdates;

E trWrite.Commit;

E end

E else

E raise Exception.Create(qryCustomer.RowError.Message);
E qgryCustomer.CachedUpdates := False;

E except

E on E: Exception do

E begin

E if trWrite.Active then

E trWrite.Rollback;

E raise;

E end;

E end:

end;

Observe that the write transaction is not started at all until the

['OK!] button is clicked. Thus, the

write transaction is active only while the data are being transferred from the dataset buffer to the
database. Since we access not more than one record in the buffer, the transaction will be active for

a very short time, which is exactly what we want.

3.8.5. Using a RETURNING Clause to Acquire an Autoinc Value

Creating the product is similar to creating the customer one. We will use it to demonstrate the
method of getting an auto-incremented value by means of a RETURNINAuUSe.

The main query:

54

Chapter 3. Developing Firebird Applications in Delphi

SELECT

E product_id,

E name,

E price,

E description
FROM product
ORDER BY name

The TFDUpdateSQL.InsertSQproperty will contain the following statement:

INSERT INTO PRODUCT (NAME, PRICE, DESCRIPTION)
VALUES (:NEW_NAME, :NEW_PRICE, :NEW_DESCRIPTION)
RETURNING PRODUCT_ID

The RETURNINf&use in this statement will return the value of the PRODUCT fiBld after it has been
populated by the BEFORE INSERiGger. The client side in this case has no need to know the name of
the generator, since it all happens on the server. Leave the UpdateOptions.GeneratorNameproperty as
nil.

To acquire the autoinc value by this method also requires filling a couple of properties for the
PRODUCT fiBld because the value is being entered indirectly:

Required = False
and
ReadOnly = True

Everything else is set up similarly to the way it was done for the Customer module.

3.9. Creating a Secondary Module

Secondary datasets typically contain larger numbers of records than primary datasets and new
records are added frequently. Our application will have only one secondary module, named
OlnvoicesO.

An invoice consists of a header where some general attributes are described (number, date,
customer E) and invoice lines with the list of products, their quantities, prices, etc. It is convenient
to have two grids for such documents: the main one (master) showing the data invoice header data
and the detail one showing the invoice lines.

We want to place two TDBGridcomponents on the invoice form and link a separate TDataSourceto
each of them that will be linked to its respective TFDQueryIn our project, the dataset with the
invoice headers (the master set) will be called grylnvoice , and the one with the invoice lines (the
detail set) will be called qgrylnvoiceLine .

55

Chapter 3. Developing Firebird Applications in Delphi
3.9.1. The Transactions for Invoice Data

The Transaction property of each dataset will specify the read-only transaction trRead that is located
in the dminvoicedata module. Use the UpdateTransaction property to specify the trWrite transaction
and the Connection property to specify the connection located in the main data module.

3.9.2. A Filter for the Data

Secondary datasets usually contain a field with the record creation date. In order to reduce the
amount of retrieved data, a notion such as Oa work periodO is commonly incorporated in the
application to filter the set of data sent to the client. A work period is a range of dates for which the
records are required.

Since the application could have more than one secondary dataset, it makes sense to add variables
containing the start and end dates of a work period to the global dmMairdata module that is used by
all modules working with the database in one way or another. Once the application is started, the

work period could be defined by the start and end dates of the current quarter, or some other
appropriate start/end date pair. The application could allow the user to change the work period

while working with the application.

3.9.3. Configuring the Module

Main] dMain[In'u'uicel dIn'u'ui::el

@ Invoices)
% 7 XIS S+

ActionList

Figure 7. The Invoice form tab

56

Chapter 3. Developing Firebird Applications in Delphi

Mair1| dMainl Inuui::e| dInuui::e|

RN

: Zq.ryEditInvni::eﬁ quyPaﬁr

. gryDeletelnvoice

Figure 8. The Invoice data module tab

Since the latest invoices are the most requested ones, it makes sense to sort them by date in reverse
order. The query will look like this in the SQL property of the grylnvoice dataset:

57

Chapter 3. Developing Firebird Applications in Delphi

SELECT

E invoice.invoice_id AS invoice_id,

E invoice.customer_id AS customer _id,

E customer.NAME AS customer_name,

E invoice.invoice_date AS invoice_date,

E invoice.total_sale AS total_sale,

E lIF(invoice.payed=1, 'Yes', 'No") AS payed

FROM

E invoice

E JOIN customer ON customer.customer_id = invoice.customer _id
WHERE invoice.invoice_date BETWEEN :date_begin AND :date_end
ORDER BY invoice.invoice_date DESC

To open this dataset, it will be necessary to initialise the query parameters:

grylnvoice.ParamByName('date_begin').AsSqlTimeStamp := dmMain.BeginDateSt;
grylnvoice.ParamByName('date_end').AsSqlTimeStamp := dmMain.EndDateSt;
grylnvoice.Open;

For the purpose of illustration, we will use stored procedures to perform all operations on an
invoice. Regular INSERMTUPDATBELETH ueries can be used when operations are simple and involve
writing to only one table in the database. We will execute each stored procedure as a separate
qguery in TFDCommamlgjects. This component is not descended from TFDRdbmsDataSeloes not buffer
data and returns not more than one result row. We are using it because it consumes fewer
resources for queries that do not return data.

Since our stored procedures modify data, it is necessary to point the Transaction property of each
TFDCommawlgiect to the trWrite transaction.

Tip

I Another alternative is to place the stored procedure calls for inserting, editing and
adding a record in the corresponding properties of a TFDUpdateSQ@biject.

3.9.4. Doing the Work

Four operations are provided for working with the invoice header: adding, editing, deleting and
setting the OpaidO attribute. Once an invoice is paid, we prevent any modifications to either the
header or the lines. The rule is implemented at stored procedure level. LetOs examine the query
strings in the CommandTegtoperty for calling the stored procedures.

58

Chapter 3. Developing Firebird Applications in Delphi

gryAddinvoice.CommandText

EXECUTE PROCEDURE sp_add_invoice(
E NEXT VALUE FOR gen_invoice_id,

E :CUSTOMER_ID,

E :INVOICE_DATE

)

gryEditinvoice.CommandText

EXECUTE PROCEDURE sp_edit_invoice(
:INVOICE_ID,

:CUSTOMER_ID,

INVOICE_DATE

~ [TVp [TD> [TD»

gryDeletelnvoice.CommandText

EXECUTE PROCEDURE sp_delete_invoice(:INVOICE_ID)

gryPayForinvoice.CommandText

EXECUTE PROCEDURE sp_pay_for_invoice(:invoice_id)

Since our stored procedures are not called from a TFDUpdateSQIlobject, we need to call
grylnvoice.Refresh after they are executed, in order to update the data in the grid.

Stored procedures that do not require input data from the user are called as follows:

59

Chapter 3. Developing Firebird Applications in Delphi

procedure Tdminvoice.Deletelnvoice;
begin
E // We do everything in a short transaction
E trWrite.StartTransaction;
E try
E qryDeletelnvoice.ParamByName('INVOICE_ID').AsInteger :=
E Invoice.INVOICE_ID.Value;
E qryDeletelnvoice.Execute;
E trWrite.Commit;
E grylnvoice.Refresh;
E except
E on E: Exception do
E begin

if trWrite.Active then

trWrite.Rollback;
raise;
end;

end;
end;

T [T [Ty [T [y

Getting User Confirmation

Before performing some operations, such as deleting an invoice, we want to get confirmation from
the user:

procedure TinvoiceForm.actDeletelnvoiceExecute(Sender: TObject);
begin
E if MessageDIg(‘Are you sure you want to delete an invoice?",

E mtConfirmation,

E [mbYes, mbNo], 0) = mrYes then
E begin

E Invoices.Deletelnvoice;

E end;

end;

Adding or Editing Records

As with the primary modules, we will use modal forms to add a new record or edit an existing one.

We will not use data-aware visual components in this implementation. As another variation, we

will use a TButtonedEdit component to select a customer. It will display the name of the current
customer and open a modal form with a grid for selecting a customer on the click of the embedded
button. We could use something like TDBLookupCombobax course, but it has drawbacks: first, the
customer list may be too large for scrolling comfortably through the drop-down list; secondly, the
name alone may not be enough to find the customer you want.

60

Chapter 3. Developing Firebird Applications in Delphi

() EditInvoiceForm [|- B[]
Date T Tme i
;ff13.1n.2015 El- 22:56:06 -

Figure 9. The Customer input form

As the window for selecting a customer, we will use the same modal form that was created for
adding customers. The code for the button click handler for the TButtonedEdit component is as
follows:

procedure TEditinvoiceForm.edtCustomerRightButtonClick(Sender: TObject);
var

E xSelectForm: TCustomerForm:

begin

E xSelectForm := TCustomerForm.Create(Self);

E try

E xSelectForm.Visible := False;

E if xSelectForm.ShowModal = mrOK then

E begin

E FCustomerld := xSelectForm.Customers.Customer. CUSTOMER_ID.Value;
E edtCustomer.Text := xSelectForm.Customers.Customer.NAME.Value;

E end;

E finally

E xSelectForm.Free;

E end:

end;

Since we are not using data-aware visual components, we need to initialize the customer code and
name for displaying during the call to the edit form:

61

Chapter 3. Developing Firebird Applications in Delphi

procedure TInvoiceForm.actEditinvoiceExecute(Sender: TObject);

var

E xEditorForm: TEditinvoiceForm;

begin

E xEditorForm := TEditinvoiceForm.Create(Self);
E try

E xEditorForm.OnClose := EditinvoiceEditorClose;

E xEditorForm.Caption := 'Edit invoice';

E xEditorForm.Invoiceld := Invoices.Invoice.INVOICE_ID.Value;
E xEditorForm.SetCustomer(

E Invoices.Invoice. CUSTOMER_ID.Value,

E Invoices.Invoice. CUSTOMER_NAME.Value);

E xEditorForm.InvoiceDate := Invoices.Invoice.INVOICE_DATE.AsDateTime;
E xEditorForm.ShowModal:;

E finally

E xEditorForm.Free;

E end:

end,;

procedure TEditinvoiceForm.SetCustomer(ACustomerld: Integer;
E const ACustomerName: string);

begin

E FCustomerld := ACustomerld;

E edtCustomer.Text := ACustomerName;

end;
Adding a new invoice and editing an existing one will be handled in the Close event of the modal
form as it is for the primary modules. However, we will not switch the dataset to CachedUpdates

mode for these because the updates carried out by stored procedures and we are not using data-
aware visual components to capture input.

procedure TInvoiceForm.actAddinvoiceExecute(Sender: TObject);

var

E xEditorForm: TEditinvoiceForm:;

begin

E xEditorForm := TEditinvoiceForm.Create(Self);
E try

E xEditorForm.Caption := 'Add invoice";

E xEditorForm.OnClose := AddInvoiceEditorClose;
E xEditorForm.InvoiceDate := Now;

E xEditorForm.ShowModal;

E finally

E xEditorForm.Free;

E end;

end;

procedure TInvoiceForm.AddInvoiceEditorClose(Sender: TObject;

E var Action: TCloseAction);
var

62

Chapter 3. Developing Firebird Applications in Delphi

E xEditorForm: TEditlnvoiceForm:;

begin

E xEditorForm := TEditinvoiceForm(Sender);

E if xEditorForm.ModalResult <> mrOK then

E begin

E Action := caFree;

E Exit;

E end;

E try

E Invoices.AddInvoice(xEditorForm.Customerld, xEditorForm.InvoiceDate);

E Action := caFree;

E except

E on E: Exception do

E begin

E Application.ShowException(E);

/It does not close the window give the user correct the error
Action := caNone;

end;
end;

procedure Tdminvoice.AddInvoice(ACustomerld: Integer; AlnvoiceDate: TDateTime);
begin

E // We do everything in a short transaction

E trWrite.StartTransaction;

E try

E gryAddinvoice.ParamByName(CUSTOMER_ID").AsInteger := ACustomerld;
E qgryAddinvoice.ParamByName(INVOICE_DATE').AsSqlTimeStamp :=

E DateTimeToSQLTimeStamp(AlnvoiceDate);

E qgryAddinvoice.Execute();

E trWrite.Commit;

E grylnvoice.Refresh;

E except

E on E: Exception do

E begin

E if trWrite.Active then

E trWrite.Rollback;

E raise;

E end;

E end:

end;

3.9.5. The Invoice Details

Next, we move on to the details of an invoice. For the qrylnvoiceLine dataset, we set the
MasterSource property to the datasource that is linked to grylnvoice and the MasterFields property
to INVOICE_IDWe specify the following query inthe SQLproperty:

63

Chapter 3. Developing Firebird Applications in Delphi

SELECT

E invoice_line.invoice_line_id AS invoice_line_id,

E invoice_line.invoice_id AS invoice_id,

E invoice_line.product_id AS product_id,

E product.name AS productname,

E invoice_line.quantity AS quantity,

E invoice_line.sale_price AS sale_price,

E invoice_line.quantity * invoice_line.sale_price AS total
FROM

E invoice_line

E JOIN product ON product.product_id = invoice_line.product_id
WHERE invoice_line.invoice_id = :invoice_id

As with the invoice header, we will use stored procedures to perform all modifications. LetOs
examine the query strings in the CommandTextroperty of the commands that call the stored
procedures.

gryAddinvoiceLine.CommandText

EXECUTE PROCEDURE sp_add_invoice_line(
- :invoice_id,

:product_id,

:quantity

~ [Th Th [TI

gryEditinvoiceLine.CommandText

EXECUTE PROCEDURE sp_edit_invoice_line(
E :invoice_line_id,

E :quantity

)

gryDeletelnvoiceLine.CommandText

EXECUTE PROCEDURE sp_delete_invoice_line(
E :invoice_line_id

)

As with the header, the form for adding a new record and editing an existing one does not use data-
aware visual components. To select a product, we use the TButtonedEdit component again. The code
for the on-click handler for the button on the TButtonedEdit object is as follows:

64

Chapter 3. Developing Firebird Applications in Delphi

procedure TEditinvoiceLineForm.edtProductRightButtonClick(Sender: TObject);
var
E xSelectForm: TGoodsForm:

begin

E if FEditMode = emInvoiceLineEdit then

E Exit;

E xSelectForm := TGoodsForm.Create(Self):
E try

E xSelectForm.Visible := False;

E if xSelectForm.ShowModal = mrOK then

E begin

E FProductld := xSelectForm.Goods.Product. PRODUCT _ID.Value;
E edtProduct.Text := xSelectForm.Goods.Product. NAME.Value;
E edtPrice.Text := xSelectForm.Goods.Product.PRICE.AsString;
E end;

E finally

E xSelectForm.Free:

E end;

end;

Since we are not using data-aware visual components, again we will need to initialize the product
code and name and its price for displaying on the edit form.

65

Chapter 3. Developing Firebird Applications in Delphi

procedure TInvoiceForm.actEditinvoiceLineExecute(Sender: TObject);
var

E xEditorForm: TEditinvoiceLineForm:

begin

E xEditorForm := TEditInvoiceLineForm.Create(Self);

E try

E xEditorForm.EditMode := emInvoiceLineEdit;

E xEditorForm.OnClose := EditinvoiceLineEditorClose;

E xEditorForm.Caption := 'Edit invoice line’;

E xEditorForm.InvoiceLineld := Invoices.InvoiceLine.INVOICE_LINE_ID.Value;
E xEditorForm.SetProduct(

E Invoices.InvoiceLine.PRODUCT _ID.Value,

E Invoices.InvoiceLine. PRODUCTNAME.Value,

E Invoices.InvoiceLine.SALE_PRICE.AsCurrency);

E xEditorForm.Quantity := Invoices.InvoiceLine.QUANTITY.Value;
E xEditorForm.ShowModal;

E finally

E xEditorForm.Free;

E end;

end;

procedure TEditInvoiceLineForm.SetProduct(AProductld: Integer;
E AProductName: string; APrice: Currency);

begin

E FProductld := AProductld;

E edtProduct.Text := AProductName;

E edtPrice.Text := CurrToStr(APrice);

end,;

We handle adding a new item and editing an existing one in the Close event of the modal form.

procedure TInvoiceForm.actAddInvoiceLineExecute(Sender: TObject);

var

E xEditorForm: TEditlnvoiceLineForm:;

begin

E xEditorForm := TEditInvoiceLineForm.Create(Self);

E try

xEditorForm.EditMode := emInvoiceLineAdd;

xEditorForm.OnClose := AddInvoiceLineEditorClose;
xEditorForm.Caption :='Add invoice line";
xEditorForm.Quantity := 1;
xEditorForm.Invoiceld := Invoices.Invoice.INVOICE_ID.Value;
xEditorForm.ShowModal;

finally
xEditorForm.Free;

end,

end;

T [T [e m> me

procedure TInvoiceForm.actEditinvoiceLineExecute(Sender: TObject);

66

Chapter 3. Developing Firebird Applications in Delphi

var
E xEditorForm: TEditinvoiceLineForm:

begin

E xEditorForm := TEditInvoiceLineForm.Create(Self);
E try

E xEditorForm.EditMode := emInvoiceLineEdit;

E xEditorForm.OnClose := EditinvoiceLineEditorClose;

E xEditorForm.Caption := 'Edit invoice line’;

E xEditorForm.InvoiceLineld := Invoices.InvoiceLine.INVOICE_LINE_ID.Value;
E xEditorForm.SetProduct(

E Invoices.InvoiceLine.PRODUCT _ID.Value,

E Invoices.InvoiceLine. PRODUCTNAME.Value,

E Invoices.InvoiceLine.SALE_PRICE.AsCurrency);

E xEditorForm.Quantity := Invoices.InvoiceLine.QUANTITY.Value;
E xEditorForm.ShowModal;

E finally

E xEditorForm.Free;

E end;

end;

procedure TInvoiceForm.AddInvoiceLineEditorClose(Sender: TObject;
E var Action: TCloseAction);

var

E xEditorForm: TEditinvoiceLineForm:

E xCustomerld: Integer;

begin

E xEditorForm := TEditinvoiceLineForm(Sender);

E if xEditorForm.ModalResult <> mrOK then

E begin

E Action := caFree;

E Exit;

E end;

E try

E Invoices.AddInvoiceLine(xEditorForm.Productld, xEditorForm.Quantity);
E Action := caFree;

E except

E on E: Exception do

E begin

E Application.ShowException(E);

E // 1t does not close the window give the user correct the error
E Action := caNone;

E end;

E end:;

end,;

procedure TInvoiceForm.EditinvoiceLineEditorClose(Sender: TObject;
E var Action: TCloseAction);

var

E xCustomerld: Integer;

E xEditorForm: TEditinvoiceLineForm:

begin

67

Chapter 3. Developing Firebird Applications in Delphi

E xEditorForm := TEditinvoiceLineForm(Sender);

E if xEditorForm.ModalResult <> mrOK then

E begin

E Action := caFree;

E Exit;

E end;

E try

E Invoices.EditinvoiceLine(xEditorForm.Quantity);

E Action := caFree;
E except

E on E: Exception do
E begin

E Application.ShowException(E);

E // It does not close the window give the user correct the error
E Action := caNone;

E end;

E end;

end;

Now letOs take a look at the code for the AddinvoiceLine and EditinvoiceLine procedures of the
dminvoice data module:

68

Chapter 3. Developing Firebird Applications in Delphi

procedure Tdminvoice.AddInvoiceLine(AProductld: Integer; AQuantity: Integer);
begin
E // We do everything in a short transaction
E trWrite.StartTransaction;
E try
E gryAddinvoiceLine.ParamByName('INVOICE_ID").AsInteger :=
E Invoice.INVOICE_ID.Value;
E if AProductld = 0 then
E raise Exception.Create('Not selected product);
E qgryAddinvoicelLine.ParamByName('PRODUCT _ID").Aslnteger := AProductld;
E gryAddinvoiceLine.ParamByName('QUANTITY").AsInteger := AQuantity;
E qgryAddinvoiceLine.Execute();
E trWrite.Commit;
E qrylnvoice.Refresh;
E grylnvoiceLine.Refresh;
E except
E on E: Exception do
E begin
if trWrite.Active then
trWrite.Rollback;
raise;
end;

end;
end;

T [T [Ty [T [y

procedure Tdminvoice.EditinvoiceLine(AQuantity: Integer);
begin

E // We do everything in a short transaction

E trWrite.StartTransaction;

E try

E qryEditinvoiceLine.ParamByName('INVOICE_LINE_ID").AsInteger :=
E InvoicelLine.INVOICE_LINE_ID.Value;

E qryEditinvoiceLine.ParamByName('QUANTITY").AsInteger := AQuantity;
E qgryEditinvoiceLine.Execute();

E trWrite.Commit;

E grylnvoice.Refresh;

E qgrylnvoiceLine.Refresh;

E except

E on E: Exception do

E begin

E if trWrite.Active then

E trWrite.Rollback;

E raise;

E end;

E end;

end;

69

Chapter 3. Developing Firebird Applications in Delphi

3.10. The Result

@ Example - [Invoices] — O *
Catalogs Registers Settings
/ Invoices ',
+ /7 X| & Tl
Number Customer Date Amount Payed -
200006 Abigail Jackson 14.10.2015 1:00:01 0,00 No
1995999 Abigail Thomas 04.08.2015 16:57:00 38744,74 No
199998 Emma Davis 04.08.2015 16:54:00 40821,72 Yes
» 193397 Sophia Davis 04.08.2015 16:51:00 13464,08 Mo
1935396 Ella Wiliams 04.08.2015 16:48:00 7989,23 Yes
199995 Christopher Thomas 04.08.2015 16:45:00 43640,42 Yes
199994 Sophia Davis Q Edit invoice — O b 283,79 Yes v
4) w Date Time:
Product |m'08'2015 B- | |16:51:DD = | Price Total ~
» CANFORD RACKBOX 2UJ, 100mm deep, grey Customer L 53,31 541,41
TECPRO Spare bezel for BP'1 series beltpack, green |Sophia Davis [E|| B 2,30 13,80
CANFORD RACKWINE Winerack, rack mount 3U, black B 209,46 3141,90
PLABER HPRC4100E CASE Empty, internal dimensions 401x3 B 123,39 1850,85
ENCLOSURE SYSTEMS 9820521/G EQUIPMENT MOUNTING A B 22,17 709,44
LUNDAHL LL2811 TRANSFORMER Analogue audio, PCB, line B 65,07 1561,68
K&M 40900 DESK RACK. ¢ OK x Cancel 93,22 745,76
ENCLOSURE SYSTEMS 26217827R /B-T MESH REAR. DOOR. Forroerroraem—rroromemr o 4 132,19 528,76
CANFORD PATCHCORD HANGER Black Ash, doorknob 3 84,15 2608,65
CANFORD RACKBOX 3U, 205mm deep, arey 15 67,93 1018,95
TECPRO AL920 Adapter cable AD913 to MultiCom Inr 20 26,01 520,20
PLABER HPRCCE 2600\ CORDURA BAG With dividers, for 2600W case 1 122,88 122,68

Figure 10. Screenshot of the sample application

3.11. Conclusion

FireDac? is a standard set of data-access and data-aware visual components for developing with
various database systems, including Firebird, starting from Delphi® XE3. FireDac? ships with the
higher-end versions of Delphi. Many independent sets of data access and data-aware visual
components are available for working with Firebird, some commercial, others distributed under a
variety of licences, including open source and freeware. They include FibPlus, IBObjects, UIB,
UniDAC, IBDac, Interbase Express (IBX) and more. The principles for developing Firebird
applications in Delphi® are the same, regardless of the components you choose.

All queries to a database are executed within a transaction. To guarantee that applications will

work correctly and efficiently with Firebird databases, it is advisable to manage transactions
manually, by explicit calls to the StartTransaction , Commit and Rollback methods of the
TFDTransaction component. Transactions should be as short as possible and you can use as many as
the logic of your application requires.

The recommended configuration for a long-running, read-only transaction to view datasets is to use
READ COMMITTiE®ation with REC_VERSIG@N conflict resolution. An application can run many
datasets in one such transaction or one for each dataset, according to the requirements of the
design.

70

Chapter 3. Developing Firebird Applications in Delphi

To avoid holding an uncommitted transaction during an editing session, either use visual
components that are not data-aware or use the CachedUpdatesnode. With CachedUpdates/ou can
restrict writes to short bursts of activity, keeping the read/write transaction active only for as long

as it takes to post the most recent changes to the database.

The TFDUpdateSQ@omponent is necessary for editing most datasets. Update queries are governed by
its InsertSQL, ModifySQL.DeleteSQLand FetchRowSQproperties. The queries for those properties can
be generated automatically by a wizard but manual corrections or adjustments are often required.

Acquiring values for auto-incrementing primary keys can be handled in one of two ways:

¥ Getting the value from the generator beforehand by specifying the UpdateOptions.GeneratorName
and UpdateOptions.AutolncFields properties for the TFDQuergomponent. This method cannot be
used for auto-incrementing fields of the IDENTITYype that was introduced in Firebird 3.

¥ Getting the value by adding a RETURNIMNtuse to the InsertSQL query. For this method you need
to specify Required=False and ReadOnly=Truefor the field because the value is not entered
directly.

It is convenient and sometimes necessary to implement more complex business logic with stored
procedures. Using the TFDCommacamponent to execute stored procedures that do not return data
reduces resource consumption.

3.12. Source Code

ObjectPascal source code for the sample project is available for download using the following link:
FireDacEx.zip .

For links to the database scripts and ready-to-use databases, refer to the final sections of the
database chapter .

71

https://www.firebirdsql.org/file/documentation/examples/en/fbdevgd30/FireDacEx.zip

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Chapter 4. Developing Firebird Applications
with Microsoft Entity Framework

This chapter will describe the process of creating applications with a Firebird database using the
Microsoft? Entity Framework? access components in the Visual Studio 20152 environment.

ADO.NET Entity Framework (EF) combines an object-oriented data access technology with an
object-relational mapping (ORM) solution for the Microsoft .NET Framework. It enables interaction
with objects by means of both LINQ in the form of LINQ to Entities and with Entity SQL.

4.1. Methods of Interacting with a Database

Entity Framework assumes three possible methods for interacting with a database:

Database first

Entity Framework creates a set of classes that reflect the model of an existing database.

Model first

The developer creates a database model that Entity Framework later uses to create an actual
database on the server.

Code first

The developer creates a class for the model of the data that will be stored in a database and then
Entity Framework uses this model to generate the database and its tables

Our sample application will use the Code first approach, but you could use one of the others just as
easily.

As we already have a database, we will just write the code that would result in

creating that database.

4.2. Setting Up for Firebird in Visual Studio 2015

To prepare for working with Firebird, you will need to install the following:

¥ FirebirdSql.Data.FirebirdClient.dll
¥ EntityFramework.Firebird.dll
¥ the Firebird DDEX Provider for Visual Studio
There is nothing difficult in installing the first two. They are currently distributed and installed into

a project by means of the NuGet package manager . The DDEX Provider library, designed for
operating Visual Studio wizards, is not so easy to install and may take more time and effort.

Efforts have been made to automate the installation process and include all components in a single
installer package . However, you might need to install all of the components manually under some
conditions. If so, you can download the following:

72

https://www.nuget.org/
https://sourceforge.net/projects/firebird-4-8-0-ddex-installer/
https://sourceforge.net/projects/firebird-4-8-0-ddex-installer/

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

¥ FirebirdSql.Data.FirebirdClient-4.10.0.0.msi
¥ EntityFramework.Firebird-4.10.0.0-NET45.7z
¥ DDEXProvider-3.0.2.0.7z

¥ DDEXProvider-3.0.2.0-src.7z

4.2.1. The Installation Process

Important!

1
Because the installation involves operations in protected directories, you will need

administrator privileges to do it.

Steps

1. Install FirebirdSql.Data.FirebirdClient-4.10.0.0.msi

2. Unpack EntityFramework.Firebird-4.10.0.0-NET45.7z to the folder with the installed Firebird
client. In my case, it is the folder C:\Program Files (x86)\FirebirdClient\

3. You need to install a Firebird build into the GAC. For your convenience, specify the path to the
gacutil utility for NET Framework 4.5 in the environment variable %PATH®% my case, the path
is C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.6.1 Tools\

4. Run the command shell cmd.exe as administrator and go to the directory with the installed
client, e.g.,

chdir "c:\Program Files (x86)\FirebirdClient"

5. Now make sure that FirebirdSqgl.Data.FirebirdClient is installed into the GAC by typing the
following command:

gacultil /I FirebirdSql.Data.FirebirdClient

If FirebirdSql.Data.FirebirdClient has not been installed into the GAC, use the following
command to do it now:

gacutil /i FirebirdSql.Data.FirebirdClient.dll

6. Now install EntityFramework.Firebird into the GAC

gacutil /i EntityFramework.Firebird.dll

7. Unpack DDEXProvider-3.0.2.0.7z to a directory convenient for you. Mine was unpacked to

C:\Program Files (x86)\FirebirdDDEX\

8. Unpack the contents of the /reg_files/VS2015 subdirectory from the archive DDEXProvider-

73

https://sourceforge.net/projects/firebird/files/firebird-net-provider/4.10.0.0/FirebirdSql.Data.FirebirdClient-4.10.0.0.msi/download
https://sourceforge.net/projects/firebird/files/firebird-net-provider/4.10.0.0/EntityFramework.Firebird-4.10.0.0-NET45.7z/download
https://sourceforge.net/projects/firebird/files/firebird-net-provider/DDEX%203.0.2/DDEXProvider-3.0.2.0.7z/download
https://sourceforge.net/projects/firebird/files/firebird-netprovider/DDEX%203.0.2/DDEXProvider-3.0.2.0-src.7z/download

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

3.0.2.0-src.7z there as well.

Author®s remark

For some strange reason these files are absent from the archive with the
compiled dll libraries, but they are present in the source code archive.

9. Open the FirebirdDDEXProvider64.reg file in Notepad. Find the line that contains %path%and
change it to the full path to the file FirebirdSql.VisualStudio.DataTools.dll , €.g.,

"CodeBase"="C:\\Program Files
(x86)\\FirebirdDDEX\\FirebirdSql.VisualStudio.DataTools.dll"

10. Save this Registry file and run it. Click ['YES!] to the question about adding the information to
the Registry.

11. Now you need to edit the machine.config file. In my installation, the path is as follows:

C:\Windows\Microsoft. NET\Framework\v4.0.30319\Config

Open this file in Notepad. Find the following section:

<system.data>
E <DbProviderFactories>

Add the following lines to this section:

<add name="FirebirdClient Data Provider"

invariant="FirebirdSql.Data.FirebirdClient"

description=".Net Framework Data Provider for Firebird"

type="FirebirdSql.Data.FirebirdClient.FirebirdClientFactory,
FirebirdSqgl.Data.FirebirdClient, Version=4.10.0.0, Culture=neutral,
PublicKeyToken=3750abcc3150b00c" />

T [T [T [T [T

| The settings we have configured here are valid for version 4.10.0.

Do the same for machine.config located at
C:\Windows\Microsoft. NET\Framework64\v4.0.30319\Config\

This completes the installation.

Testing the Installation

To make sure that everything has been installed successfully, start Visual Studio 2015. Find the
Server Explorer and try to connect to an existing Firebird database.

74

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Choose Data Source ? >

Data source:

Firebird Data Source Description

Microsoft Access Databaze File
Microsoft QDBC Data Source
Microsoft SOL Server

Microsoft SOL Server Databasze File
COracle Database

< others

Data provider:

MET Framewark Diata Provider for Fireln ~

Always use this selection Continue Cancel

Figure 11. Choose data source for testing installation

Add Connecticn 7 x

Enter information to connect to the selected data source or click "Change” to choose a different data
source and/or provider.

Data source:

Firebird Data Source ((MET Framework Data Provider for Firebird) Change...
Data Source Data Source Port Dialect Charset
localhost 30530 3 " UTES s
Database
examples

Legin Connection Settings

User SYSDBA Server Type Standalone Server v

Passwaord | *eessrsss

Role

Advanced...

Test Connection DK Cancel

Figure 12. Locate a database

75

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Microsoft Visual Studic pd
o Test connection succeeded.
QK
Figure 13. Test and confirm the connection
4.3. Creating a Project
For our example in this chapter, we will create a Windows Forms application. Other types of

applications differ from it, but the principles of working with Firebird via Entity Framework

remain the same.

4.3.1. Adding Packages to the Project

The first task after creating a Windows Forms project is to add the following packages to it, using

the NuGet package manager:

¥ FirebirdSql.Data.FirebirdClient
¥ EntityFramework

¥ EntityFramework.Firebird

Right-click the project name in Solution Explorer and select
down list.

76

Manage NuGet Packages from the drop-

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

w3l Solution 'FEMVCExample' (1 project)
a = Co Il'l.,cEIamPIE
Build rvice References
Rebuild operties
Clesn ferences
1p_Data
1p_Start
Analyze —

LY .
View

Convert wntrollers

Publish... nts
Configure Application Insights... P 'j_El =
oviders

Overview ripts

Scope to This EWS
MNew Solution Explorer View P - E_t' onlnsights.config
ypVariables.cs

Add Jicon.ico

Manage MuGet Packages... obal.asax
Manage Bower Packages... SEfEEIT
oject_Readme.html

Set as StartUp Project eb.confi

Figure 14. Solution Explorer-!select NuGet packages

Find the packages listed above in the Nuget catalogue and install them in the package manager.

7

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

MNuGet: WindowsFormsAppl +# > Forml.cs [Design]
Installed Updates NuGet Package Manager: WindowsFormsApp1

Firebird5ql.Data.FirebirdClient = If_'g |:| Include prerelease Package source: nuget.org - &8

E FirebirdSql.Data.FirebirdClie ‘

FirebirdSql.Data.FirebirdClient @ by FirebirdSOL, 197K downloads ~ v5.11.0

Firebird ADO.MET Data provider
Version: Latest stable 5.11.0 ~ Install

ling2db.Firebird by Igor Tkachev, 5,3K downloads

This package includes a T4 template to generate data models for Firebird v) Options
database and references to the ling2db and Firebird5gl.Data.FirebirdClient nu...

ndo.firebird by Mirko Matytschak, 266 downloads Description
NDO Provider dil for connection with FirebirdSql.Data. FirebirdClient Firebird ADO.NET Data provider
Version: 5.11.0

SD.LLBELGen.Pro.DQE.Firebird @ by Selutions Design bv, 7,96K downl Author{s): Firebird5QL

This package contains the Dynamic Query Engine for Firebird. License:

ET Data F' Date published
D 2.0.

Project URL:

Report Abuse:

firebird, firebirsql, adonet,
database, firebirdclient

Figure 15. Select and install packages from NuGet catalogue

4.4. Creating an Entity Data Model (EDM)

In our application, we will use the Code First approach.

To create an EDM, right-click the project name in Solution Explorer and select Add YNew Item
from the menu.

78

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

¥ Solution Explorer -

fal Solution 'WindowsFormsTest' (1 project)

Build

Rebuild

Clean

Analyze

Publish...

Distribute With Hockeyfpp...
Scope to This

Mew Solution Explorer View
Add

Manage MuGet Packages...

Set as StartUp Project

Debug
Initialize Interactive with Project
Source Control

Cut

Remove

Rename

Unload Project

Open Folder in File Explorer

Properties

Figure 16. Solution Explorer"N" Add YNew Item

Alt+Enter

" """ ndowsFormsApp1
Properties
References
App.config
Forml.cs
packages.config
Program.cs

MNew ltem...
Existing [temn...
Mew Folder

REST API Client...

Reference...

Service Reference...
Connected Service
B

Analyzer..,
Windows Form...
User Cantrol...
Component...

Class...

Next, in the Add New Item wizard, select ADO.NET Entity Data Model .

79

Ctrl+5Shift+ 4

Shift+Alt+8

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Add New Item - WindowsForms&pp1
4 |nstalled

4 Visual CF ltems
Code

Data

r: Default

ADO.NET Entity Data Model

Visual C# ltems

A project item for creating an ADO.NET

DataSet Visual C# [terms Entity Data Model.

General

EF 5.x DbContext Generator Visual C# ltems

EF 6.x DbContext Generator

Visual C# ltems

Service-based Databasze Visual C# lterms

Graphics

b Online XML File Visual C# lterms

Visual C# ltems

XML Schema

XSLT File

Visual C# ltems

DbModel

Cancel

Figure 17. Add New Item wizard"N"select ADO.NET Entity Data Model

Since we already have a database, we will generate the EDM from the database. Select the icon
captioned Code First from database .

Entity Data Model Wizard x

_p Choose Model Contents

What should the model contain?

EF Designer Empty EF Empty Code SGENETE:
from Designer First model from
database rodel database

Creates a Code First model based on an existing database, You can choose the database connection, settings
for the model, and database objects to include in the model,

Mext = Cancel

Figure 18. Add New Item wizard"N"select 'Code First from database'

Now we need to select the connection the model will be created from. If the connection does not
exist, it will have to be created.

80

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

ip Choose Your Data Connection

Which data connection should your application use to connect to the database?

' Mew Connection...
Choose Data Source 7 e red to connect
ant to in =

[Data source:

Firebird Data Source Description He,

Microsoft SOL Server
Microsoft SOL Server Database File
<other=

Data provider:

MET Framework Data Provider for Firebi ~

Always use this selection Continue Cancel

-
< Previous it > Finish Cancel

Figure 19. Add New Item wizard"N"choose Connection

You might need to specify some advanced properties in addition to the main connection properties.
You might want to set the transaction isolation, for example, to a level different from the default
Read Committed , or to specify connection pooling, or something else that differs from defaults.

8l

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Add Connection

source and/or provider,

Data source:

? X

Enter information to connect to the selected data source or click "Change" to choose a different data

Firebird Data Source (MET Framework Data Provider for Firebird) Change...
Data Source Data Source Port Dialect Charset
localhost 3050 3 w UTF2 e
Databaze
examples
Legin Connection Settings
User SYSDEA server Type Standalone Server ~
Password
Fole
Advanced...
Test Connection QK Cancel
Figure 20. Add Connection wizard"N"Connection properties
Advanced Properties ? >

Character 5et
Client Library

Compressicn

CryptKey

DE Cache Pages

Mhalect

Fetch5ize

|solationLevel

Mo Garbage Collect

BTt

Character Set
The connection character set encoding.

character set=UTF&:port number=3053;data source=localh

Ok

Cancel

Figure 21. Add Connection wizard"N"Advanced connection properties

82

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Snapshot is the recommended isolation level because Entity Framework and
I ADO.NET both use disconnected data access"N"where each connection and each

transaction is active only for a very short time.

Next, the Entity Data Model wizard will ask you how to store the connection string.

Entity Data Model Wizard

ip Choose Your Data Connection

Which data connection should your application use to connect to the database?

lecalhost (examples) e Mew Connection...

This connection string appears to contain sensitive data (for exarmple, a password) that is required to connect
to the database. Storing sensitive data in the connecticn string can be a security risk. Do you want to include
this sensitive data in the connection string?

(®) Mo, exclude sensitive data from the connection string. | will set it in my application code.

() Yes, include the sensitive data in the connection string.

Connection string:
character set=UTFS;port number=3033;data source=localhost;initial catalog=exarmples;user id=5Y50DBA

Save connection settings in App.Config as:

DbMModel

< Previous Mext = Cancel

Figure 22. EDM wizard"N"connection string storage

For a web application or another three-tier architecture, where all users will be working with the

database using a single account, select Yes. If your application is going to request authentication for

connecting to the database, select No.

83

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

It is much more convenient to work with wizards if you select Yes for each
property. You can always change the isolation level in the application when it is
ready for testing and deployment by just editing the connection string in the
<AppName>.exe.confapplication configuration file. The connection string will be
stored in the connectionStrings section and will look approximately like this:

<add name="DbModel"
' E connectionString="character set=UTF8; data source=localhost;
E initial catalog=examples; port number=3050;
E user id=sysdba; dialect=3; isolationlevel=Snapshot;
E pooling=True; password=masterkey;"
E providerName="FirebirdSql.Data.FirebirdClient" />

For the configuration file to stop storing the confidential information, just delete
this parameter from the connection string: password=masterkey;

Firebird 3.0 Notes

Unfortunately, the current ADO.Net provider for Firebird (version 5.9.0.0) does not
support network traffic encryption, which is enabled by default in Firebird 3.0 and
higher versions. If you want to work with Firebird 3.0, you need to change some
settings in firebird.conf (or in databases.conf for a specific database) to make
Firebird to work without trying to use network encryption.

To do it, change the setting from the default
11
WireCrypt = Enabled
to

WireCrypt = Disabled

making sure to delete the O #O comment marker. Remember that you must restart
the server for configuration changes to take effect.

Next, you will be asked which tables and views should be included in the model.

84

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Entity Data Model Wizard >

i .) Choose Your Database Objects and Settings

Which database objects do you want to include in your model?

e IS A
[]® Firebird

[ZIER CUSTOMER

mg INVOICE

[ZIEm INVOICE_LINE

[ZlEg PRODUCT

(] WEBROLE

[]Em WEBUSER

[|ER WEBUSERINROLE

[]ER migrations

[1ER password_resets

1A ucers

Pluralize or singularize generated object names

< Previous lext Einizh Cancel

Figure 23. EDM wizard"N"select tables and views
For our project, select the four tables that are checked in the screenshot.

The basic EDM is now ready.

4.4.1. The EDM Files

When the wizardOs work is finished, you should have five new files: a model file and four files each
describing an entity in the model.

An Entity File

LetOs take a look at the generated file describing the INVOICEentity:

85

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

[Table("Firebird.INVOICE")]

public partial class INVOICE

{

E [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage",
"CA2214:DoNotCallOverridableMethodsInConstructors")]

E public INVOICE()

E {

E INVOICE_LINES = new HashSet<INVOICE_LINE>();
E }

E [Key]

E [DatabaseGenerated(DatabaseGeneratedOption.None)]
E public int INVOICE_ID { get; set; }

public int CUSTOMER_ID { get; set; }
E public DateTime? INVOICE_DATE { get; set; }
E public decimal? TOTAL_SALE { get; set; }
E public short PAYED { get; set; }
E public virtual CUSTOMER CUSTOMER { get; set; }

E [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage",
"CA2227:CollectionPropertiesShouldBeReadOnly")]
E public virtual ICollection<INVOICE_LINE> INVOICE_LINES { get; set; }

}

The class contains properties for each field of the INVOICEtable. Each of these properties has
attributes that describe constraints. You can study the details of the various attributes in the
Microsoft document, Code First Data Annotations .

Navigation Properties and OLazy LoadingO

Two navigation properties are generated: CUSTOMERd INVOICE_LINESThe first one contains a
reference to the customer entity. The second contains a collection of invoice lines. It is generated
because the INVOICE_LINEble has a foreign key to the INVOICHEable. Of course, you can remove this
property from the INVOICEentity, but it is not really necessary. The CUSTOMERd INVOICE_LINES
properties use Olazy loadingO which means that loading is not performed until the first access to an

object. That way, the loading of related data is avoided unless it is actually needed. Once the data

are accessed via the navigation property, they will be loaded from the database automatically.

n If lazy loading is in effect, classes that use it must be public and their properties
must have the keywords public and virtual

The DbModel File

Next, we examine the DbModel.csfile that describes the overall model.

86

https://msdn.microsoft.com/en-us/data/jj591583

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

public partial class DbModel : DbContext

public DbModel()

: base("name=DbModel")
{
}

m mmm—

public virtual DbSet<CUSTOMER> CUSTOMERS { get; set; }
public virtual DbSet<INVOICE> INVOICES { get; set; }

public virtual DbSet<INVOICE_LINE> INVOICE_LINES { get; set; }
public virtual DbSet<PRODUCT> PRODUCTS { get; set; }

T [T [Ty [T

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Entity<CUSTOMER>()
.Property(e => e.ZIPCODE)
.IsFixedLength();

™ [T [T [y mp

modelBuilder.Entity<CUSTOMER>()
.HasMany(e => e.INVOICES)
WithRequired(e => e. CUSTOMER)
WillCascadeOnDelete(false);

m [T [T [Ty

modelBuilder.Entity<PRODUCT>()
.HasMany(e => e.INVOICE_LINES)
.WithRequired(e => e.PRODUCT)
WillCascadeOnDelete(false);

T [T [T [T

modelBuilder.Entity<INVOICE>()
.HasMany(e => e.INVOICE_LINES)
WithRequired(e => e.INVOICE)
.WillCascadeOnDelete(false);

T [T [T [T

The properties coded here describe a dataset for each entity, along with advanced properties that
are specified for creating a model with Fluent API. A complete description of the Fluent API can be
found in the Microsoft document entitled Configuring/Mapping Properties and Types with the

Fluent API .

We will use the Fluent API to specify precision and scale for properties of type
OnModelCreatingmethod, by adding the following lines:

87

DECIMAIn the

https://msdn.microsoft.com/en-us/data/jj591617.aspx
https://msdn.microsoft.com/en-us/data/jj591617.aspx

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

modelBuilder.Entity<PRODUCT>()
E .Property(p => p.PRICE)

E .HasPrecision(15, 2);
modelBuilder.Entity<INVOICE>()

E .Property(p => p.TOTAL_SALE)
E .HasPrecision(15, 2);

modelBuilder.Entity<INVOICE_LINE>()
E .Property(p => p.SALE_PRICE)
E .HasPrecision(15, 2);

modelBuilder.Entity<INVOICE_LINE>()
E .Property(p => p.QUANTITY)
E .HasPrecision(15, 0);

4.5. Creating a User Interface

In our application, we will create interfaces for two primary entities: a form each for the product
and the customer entities. Each form contains a DataGridView grid, a ToolStrip toolbar with
buttons and also a BindingSource component that is used to bind data to the controls on the form.

toolStrip [ﬁ' bindingSource

Figure 24. A form for the Customer entity

88

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

Since both forms are similar in function and implementation, we will describe just one.

4.5.1. Getting a Context
To work with our model, we will need the method for getting a context (or a model). The following
statement is sufficient for that purpose:

DbModel dbContext = new DbModel();

If no confidential data are stored in the connection string"N"for example, the password is absent
because it will be captured during the authentication process when the application is started"N"we
will need a special method for storing and recovering the connection string or for storing the
previously created context. For that, we will create a special class containing some application-level
global variables, along with a method for getting a context.

A context might be the start and end dates of a work period, for example.

static class AppVariables

m

private static DbModel dbContext = null;

/Il <summary>

/] Start date of the working period

/Il </[summary>

public static DateTime StartDate { get; set; }

m > e rm»

/Il <summary>

/Il End date of the working period

/Il </[summary>

public static DateTime FinishDate { get; set; }

m > [T [my

/Il <summary>

/ll Returns an instance of the model (context)

/Il </[summary>

Il <returns>Model</returns>

public static DbModel CreateDbContext() {
dbContext = dbContext ?? new DbModel();
return dbContext;

> [Ty TP TP [T» T» M mp [mp

The connection string itself is applied after the authentication process completes successfully
during the application launch. We will add the following code to the Loadevent handler of the main
form for that.

89

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void MainForm_Load(object sender, EventArgs e) {
var dialog = new LoginForm();
if (dialog.ShowDialog() == DialogResult.OK)
{
var dbContext = AppVariables.getDbContext();
try
{
string s = dbContext.Database.Connection.ConnectionString;
var builder = new FbConnectionStringBuilder(s);
builder.UserID = dialog.UserName;
builder.Password = dialog.Password;
dbContext.Database.Connection.ConnectionString = builder.ConnectionString;
/I try connect
dbContext.Database.Connection.Open();

}

catch (Exception ex)
{
/I display error
MessageBox.Show(ex.Message, "Error");
Application.Exit();
}
}

else
Application.Exit();

S~ Ty Mp M e e e e e T Ty Ty T T T M My My My mp mp mp

Now, to get a context, we use the static CreateDbContextmethod:

var dbContext = AppVariables.getDbContext();

4.6. Working with Data

The entities in the model definition contain no data. The easiest way to to load data is to call the
Loadmethod. For example,

90

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void LoadCustomersData()

dbContext. CUSTOMERS.Load();
var customers = dbContext. CUSTOMERS.Local;
bindingSource.DataSource = customers.ToBindingList();

~ T m m—

private void CustomerForm_Load(object sender, EventArgs e)

LoadCustomersData();
dataGridView.DataSource = bindingSource;
dataGridView.Columns['"CUSTOMER_ID"].Visible = false;

~ T m m—

However, this approach has a few drawbacks:

1. The Loadmethod loads all data from the CUSTOM&&RIe to memory at once

2. Although lazy properties (INVOICES are not loaded immediately, but only once they are
accessed, they will be loaded anyway when the records are shown in the grid and it will happen
each time a group of records is shown

3. Record ordering is not defined

To get around these drawbacks, we will use a feature of the LINQ (Language Integrated Query)
technology, LINQ to Entities . LINQ to Entities offers a simple and intuitive approach to getting data
using C# statements that are syntactically similar to SQL query statements. You can read about the
LINQ syntax in LINQ to Entities .

4.6.1. LINQ Extension Methods

The LINQ extension methods can return two objects: IEnumerable and IQueryable. The IQueryable
interface is inherited from IEnumerable so, theoretically, an 1Queryable object is also an |IEnumerable
In reality, they are distinctly different.

The IEnumerable interface is in the System.Collections namespace. An IEnumerable object is a
collection of data in memory that can be addressed only in a forward direction. During the query
execution, IEnumerableloads all data. Filtering, if required, is done on the client side.

The IQueryable interface is in the System.Ling namespace. It provides remote access to the database
and movement through the data can be bi-directional. During the process of creating a query that
returns an IQueryable object, the query is optimized to minimise memory usage and network
bandwidth.

The Local property returns the IEnumerable interface, through which we can create LINQ queries.

91

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/ef/language-reference/linq-to-entities

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void LoadCustomersData()

var dbContext = AppVariables.getDbContext();
dbContext. CUSTOMERS.Load();
var customers =
from customer in dbContext. CUSTOMERS.Local
orderby customer.NAME
select new customer;
bindingSource.DataSource = customers.ToBindingList();

> [Ty [T [T> TP [T> [T» M

However, as this query will be executed on the data in memory, it is really useful only for small
tables that do not need to be filtered beforehand.

For a LINQ query to be converted into SQL and executed on the server, we need to access the
dbContext. CUSTOMERBectly instead of accessing the dbContext. CUSTOMERS.Locptoperty in the
LINQ query. The prior call to dbContext. CUSTOMERS.Loadfp load the collection to memory is not
required.

IQueryable and BindingList

IQueryable objects present a small problem: they cannot return BindingList. BindingList is a base
class for creating a two-way data-binding mechanism. We can use the IQueryable interface to get a
regular list by calling TolList but, this way, we lose handy features such as sorting in the grid and
several more. The deficiency was fixed in .NET Framework 5 by creating a special extension. To do

the same thing in FW4, we will create our own solution.

92

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

public static class DbExtensions

m [T ey

™ > e ey mp e

T T [T e e e mp My mp mp T [T [T [Ty e e my

M M e M e e

> [T> [T> T M» mp mp mp

/I Internal class for map generator values to it
private class IdResult
{
public int Id { get; set; }
}

/I Cast IQueryable to BindingList
public static BindingList<T> ToBindingList<T>
(this IQueryable<T> source) where T : class

{
return (new ObservableCollection<T>(source)).ToBindingList();

}

Il Get the next value of the sequence

public static int NextValueFor(this DbModel dbContext, string genName)

{
string sql = String.Format(

"SELECT NEXT VALUE FOR {0} AS Id FROM RDB$DATABASE", genName);

return dbContext.Database.SqlQuery<IdResult>(sql).First().ld;

}

I/l Disconnect all objects from the DbSet collection from the context

/I Useful for updating the cache

public static void DetachAll<T>(this DbModel dbContext, DbSet<T> dbSet)
where T : class

{
foreach (var obj in dbSet.Local.ToList())
{

dbContext.Entry(obj).State = EntityState.Detached;

}

}

/[Update all changed objects in the collection

public static void Refresh(this DbModel dbContext, RefreshMode mode,
IEnumerable collection)

{
var objectContext = ((I0ObjectContextAdapter)dbContext).ObjectContext;
objectContext.Refresh(mode, collection);

}

/l Update the object

public static void Refresh(this DbModel dbContext, RefreshMode mode,
object entity)

{
var objectContext = ((I0ObjectContextAdapter)dbContext).ObjectContext;
objectContext.Refresh(mode, entity);

}

93

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework
Other Extensions

There are several more extensions in the iQueryable interface:

NextValueFor

is used to get the next value from the generator.

dbContext.Database.SqlQuery

allows SQL queries to be executed directly and their results to be displayed on some entity
(projection).

DetachAll

is used to detach all objects of the DBSet collection from the context. It is necessary to update the
internal cache, because all retrieved data are cached and are not retrieved from the database
again. However, that is not always useful because it makes it more difficult to get the latest
version of records that were modified in another context.

In web applications, a context usually exists for a very short period. A new

context has an empty cache.

Refresh

is used to update the properties of an entity object. It is useful for updating the properties of an
object after it has been edited or added.

Code for Loading the Data

Our code for loading data will look like this:

94

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void LoadCustomersData()

var dbContext = AppVariables.getDbContext();
I/ disconnect all loaded objects
/I this is necessary to update the internal cache
/I for the second and subsequent calls of this method
dbContext.DetachAll(dbContext. CUSTOMERS);
var customers =
from customer in dbContext. CUSTOMERS
orderby customer.NAME
select customer;
bindingSource.DataSource = customers.ToBindingList();

~ [Ty My Mmoo mm

private void CustomerForm_Load(object sender, EventArgs e)

LoadCustomersData();

dataGridView.DataSource = bindingSource;
dataGridView.Columns["'INVOICES"].Visible = false;
dataGridView.Columns["CUSTOMER_ID"].Visible = false;
dataGridView.Columns['NAME"].HeaderText = "Name";
dataGridView.Columns['ADDRESS"].HeaderText = "Address";
dataGridView.Columns["ZIPCODE"].HeaderText = "ZipCode";
dataGridView.Columns['PHONE"].HeaderText = "Phone";

>~ [Ty mm m m m—

Adding a Customer

This is the code of the event handler for clicking the Add button:

95

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void btnAdd_Click(object sender, EventArgs e) {
E var dbContext = AppVariables.getDbContext();
E // creating a new entity instance
E var customer = (CUSTOMER)bindingSource.AddNew();
E // create an editing form
using (CustomerEditorForm editor = new CustomerEditorForm()) {
editor. Text = "Add customer";
editor.Customer = customer;
/I Form Close Handler
editor.FormClosing += delegate (object fSender,
FormClosingEventArgs fe) {
if (editor.DialogResult == DialogResult.OK) {
try {
/I get next sequence value
/I and assign it
customer.CUSTOMER_ID = dbContext.NextValueFor("GEN_CUSTOMER_ID");
// add a new customer
dbContext. CUSTOMERS.Add(customer);
/I trying to save the changes
dbContext.SaveChanges();
/I and update the current record
dbContext.Refresh(RefreshMode.StoreWins, customer);
}
catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");
/I Do not close the form to correct the error
fe.Cancel = true;

}
}

else
bindingSource.CancelEdit();
k
/I show the modal form
editor.ShowDialog(this);

}

~ TP MMPMMPMP MMM TP M TP TP TP T MO TP M My M M M M M M T T T T T Ty [T

While adding the new record, we used the generator to get the value of the next identifier. We

could have done it without applying the value of the identifier, leaving the BEFORE INSERiGger to
fetch the next value of the generator and apply it. However, that would leave us unable to update

the added record.

Editing a Customer

The code of the event handler for clicking the Edit button is as follows:

96

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void btnEdit_Click(object sender, EventArgs e) {
E var dbContext = AppVariables.getDbContext();
E // get instance
E var customer = (CUSTOMER)bindingSource.Current;
E // create an editing form
using (CustomerEditorForm editor = new CustomerEditorForm()) {
editor. Text = "Edit customer";
editor.Customer = customer;
/I Form Close Handler
editor.FormClosing += delegate (object fSender, FormClosingEventArgs fe) {
if (editor.DialogResult == DialogResult.OK) {
try {
/I trying to save the changes
dbContext.SaveChanges();
dbContext.Refresh(RefreshMode.StoreWins, customer);
/[update all related controls
bindingSource.ResetCurrentltem();
}
catch (Exception ex) {
[/ display error
MessageBox.Show(ex.Message, "Error");
/I Do not close the form to correct the error
fe.Cancel = true;

}
}

else
bindingSource.CancelEdit();
h
/I show the modal form
editor.ShowDialog(this);

}

S~ mpmp P Mp M o M o e Ty T T T T T T M M M me M mp mp mp oy

The form for editing the customer looks like this:

97

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework
|

- CustomerEditorForm Ii”ﬂ”é]

Mame

Figure 25. Customer edit form

The code for binding to data is very simple.

public CUSTOMER Customer { get; set; }
private void CustomerEditorForm_Load(object sender, EventArgs e)

edtName.DataBindings.Add("Text", this.Customer, "NAME");
edtAddress.DataBindings.Add("Text", this.Customer, "ADDRESS");
edtZipCode.DataBindings.Add("Text", this.Customer, "ZIPCODE");
edtPhone.DataBindings.Add("Text", this.Customer, "PHONE");

>~ [Tp [m m-—

Deleting a Customer

The code of the event handler for clicking the Delete button is as follows:

98

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void btnDelete_Click(object sender, EventArgs e) {
E var dbContext = AppVariables.getDbContext();
var result = MessageBox.Show("Are you sure you want to delete the customer?”,
"Confirmation",
MessageBoxButtons.YesNo,
MessageBoxlcon.Question);
if (result == DialogResult.Yes) {
/I get the entity
var customer = (CUSTOMER)bindingSource.Current;
try {
dbContext. CUSTOMERS.Remove(customer);
/I trying to save the changes
dbContext.SaveChanges();
/I remove from the linked list
bindingSource.RemoveCurrent();
}
catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");

}
}

S~ TP M M M M M mp mp mp mp mp e e e me e Iy

4.7. Secondary Modules

Our application will have only one secondary module, named OlnvoicesO. Secondary modules
typically contain larger numbers of records than primary ones and new records are added to them
frequently.

An invoice consists of a title where some general attributes are described (number, date, customer
E) and invoice lines with the list of products, their quantities, prices, etc. It is convenient to have

two grids for such documents: the main one showing the invoice header data and the detail one for
the list of products sold. We will need one DataGridView component for each entity on the
document form, binding the appropriate BindingSource to each.

99

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

55 InvoiceForm E@
+/X $ S 4

+ 7 X

toolStrip2 [ﬁ masterBinding [ﬁ detailBinding

Figure 26. Invoice form

4.7.1. Filtering Data

Most secondary entities contain a field with the document creation date. To reduce the amount of
retrieved data, the concept of a work period is usually introduced to filter the data sent to the client.

A work period is a range of dates for which the records are required. Since the application can have

more than one secondary entity, it makes sense to add variables containing the start and end dates

of a work period to the global AppVariables data module (see Getting a Context that is used by all
modules working with the database in one way or another. Once the application is started, the

work period is usually defined by the dates when the current quarter starts and ends, although of
course, other options are possible. While working with the application, the user can change the

work period.

Since the most recent records are the most requested, it makes sense to sort them by date in reverse
order. As with the primary modules, we will use LINQ to retrieve data.

4.7.2. Loading the Invoice Data

The following method loads the invoice headers:

100

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

public void LoadInvoicesData() {
var dbContext = AppVariables.getDbContext();

m

var invoices =
from invoice in dbContext.INVOICES
where (invoice.INVOICE_DATE >= AppVariables.StartDate) &&
(invoice.INVOICE_DATE <= AppVariables.FinishDate)
orderby invoice.INVOICE_DATE descending
select new InvoiceView
{
Id = invoice.INVOICE_ID,
Cusomer_Id = invoice. CUSTOMER_ID,
Customer = invoice. CUSTOMER.NAME,
Date = invoice.INVOICE_DATE,
Amount = invoice. TOTAL_SALE,
Payed = (invoice.PAYED == 1) ? "Yes" : "No"
I

masterBinding.DataSource = invoices.ToBindingList();

> [T My My mp mp mp mp mp mp oy o e my oy o

To simplify type casting, we define an InvoiceView class, rather than use some anonymous type. The
definition is as follows:

101

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

public class InvoiceView {
E publicintId { get; set; }

E public int Cusomer_lId { get; set; }
E public string Customer { get; set; }
E public DateTime? Date { get; set; }

E public decimal? Amount { get; set; }

m

public string Payed { get; set; }

public void Load(int Id) {
var dbContext = AppVariables.getDbContext();
var invoices =
from invoice in dbContext.INVOICES
where invoice.INVOICE_ID == Id
select new InvoiceView
{
Id = invoice.INVOICE_ID,
Cusomer_Id = invoice. CUSTOMER_ID,
Customer = invoice. CUSTOMER.NAME,
Date = invoice.INVOICE_DATE,
Amount = invoice. TOTAL_SALE,
Payed = (invoice.PAYED == 1) ? "Yes" : "No"
Ji

T > [T [T T [T T T e M e Ty T mp

InvoiceView invoiceView = invoices.ToList().First();
this.ld = invoiceView.Id;

this.Cusomer_Id = invoiceView.Cusomer_ld;
this.Customer = invoiceView.Customer;

this.Date = invoiceView.Date;

this.Amount = invoiceView.Amount;

this.Payed = invoiceView.Payed;

~ T m» mp mp mp mp mp

The Load method allows us to update one added or updated record in the grid quickly, instead of
completely reloading all records. Here is the code of the event handler for clicking the Add button:

102

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void btnAddinvoice_Click(object sender, EventArgs e) {
var dbContext = AppVariables.getDbContext();
var invoice = dbContext.INVOICES.Create();
using (InvoiceEditorForm editor = new InvoiceEditorForm()) {
editor. Text = "Add invoice";
editor.Invoice = invoice;
/I Form Close Handler
editor.FormClosing += delegate (object fSender, FormClosingEventArgs fe) {
if (editor.DialogResult == DialogResult.OK) {
try {
/I get next sequence value
invoice.INVOICE_ID = dbContext.NextValueFor("GEN_INVOICE_ID");
// add a record
dbContext.INVOICES.Add(invoice);
/l trying to save the changes
dbContext.SaveChanges();
/I add the projection to the grid list
((InvoiceView)masterBinding.AddNew()).Load(invoice.INVOICE_ID);
}
catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");
/I Do not close the form to correct the error
fe.Cancel = true;

}
}
15
I/l show the modal form
editor.ShowDialog(this);

}

>~ TP MMM MMM M M TP TP TP TP TP TP TP TP TP M M M M M M M M T T Ty [T

In our primary modules, the similarly-named method called dbContext.Refresh but, here, a record

is updated by by calling the Load method of the InvoiceView class. The reason for the difference is
that dbContext.Refresh is used to update entity objects, not the objects that can be produced by
complex LINQ queries.

The code of the event handler for clicking the Edit button:

103

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void btnEditinvoice_Click(object sender, EventArgs e) {

E var dbContext = AppVariables.getDbContext();

E // find entity by id

E var invoice = dbContext.INVOICES.Find(this.Currentinvoice.d);

E if (invoice.PAYED == 1) {

E MessageBox.Show("The change is not possible, the invoice has already been paid.",
E "Error");

E return;

E}

using (InvoiceEditorForm editor = new InvoiceEditorForm()) {
editor.Text = "Edit invoice";
editor.Invoice = invoice;
/I Form Close Handler
editor.FormClosing += delegate (object fSender, FormClosingEventArgs fe) {
if (editor.DialogResult == DialogResult.OK) {
try {
/I trying to save the changes
dbContext.SaveChanges();
/I refresh
Currentinvoice.Load(invoice.INVOICE_ID);
masterBinding.ResetCurrentltem();
}
catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");
/I Do not close the form to correct the error
fe.Cancel = true;

}
}
15
editor.ShowDialog(this);
}

>~ [T > M M My e mp e e e e e Ty e Ty Ty T T Ty me my mp mp

Here we needed to find an entity by the identifier provided in the current record. The
Currentlnvoice is used to retrieve the invoice selected in the grid. This is how we code it:

public InvoiceView Currentinvoice {

get {
return (InvoiceView)masterBinding.Current;

m

}

=~ [T [TD

Using the same approach, you can implement deleting the invoice header yourself.

Paying an Invoice

Besides adding, editing and deleting, we want one more operation for invoices: payment. Here is

104

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

code for a method implementing this operation:

private void btninvoicePay_Click(object sender, EventArgs e) {
E var dbContext = AppVariables.getDbContext();
E var invoice = dbContext.INVOICES.Find(this.Currentinvoice.ld);
E try {
E if (invoice.PAYED == 1)
E throw new Exception("The change is not possible, the invoice has already been
paid.");
E invoice.PAYED = 1;
/I trying to save the changes
dbContext.SaveChanges();
/I refresh record
Currentinvoice.Load(invoice.INVOICE_ID);
masterBinding.ResetCurrentlitem();
}
catch (Exception ex) {
/ display error
MessageBox.Show(ex.Message, "Error");

}

== [T [T [T T T [T T T T [T M

4.7.3. Showing the Invoice Lines

We have two choices for displaying the invoice lines:

1. Getting data for each invoice from the INVOICE_LINmBavigation property and displaying the
contents of this complex property in the detail grid, probably with LINQ transformations

2. Getting the data for each invoice with a separate LINQ query that will be re-executed when the
cursor moves to another record in the master grid

Either way has its advantages and drawbacks.

The first one assumes that we want to retrieve all invoices at once for the specified period together
with the bound data from the invoice lines when the invoice form is opened. Although it is done
with one SQL query, it may take quite a while and requires a large amount of random-access
memory. It is better suited to web applications where records are usually displayed page by page.

The second one is a bit more difficult to implement, but it allows the invoice form to be opened
quickly and requires less resource. However, each time the cursor in the master grid moves, an SQL
qguery will be executed, generating network traffic, albeit with only a small volume of data.

For our application we will use the second approach. We need an event handler for the
BindingSource component for editing the current record:

105

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void masterBinding_CurrentChanged(object sender, EventArgs e) {
E LoadInvoiceLineData(this.Currentinvoice.ld);
E detailGridView.DataSource = detailBinding;

}

Now, the method for loading the invoice data:

private void LoadlnvoiceLineData(int? id) {
E var dbContext = AppVariables.getDbContext();
var lines =
from line in dbContext.INVOICE_LINES
where line.INVOICE_ID ==id
select new InvoicelLineView
{
Id = line.INVOICE_LINE_|ID,
Invoice_Id = line.INVOICE_ID,
Product_Id = line.PRODUCT _ID,
Product = line. PRODUCT.NAME,
Quantity = line. QUANTITY,
Price = line.SALE_PRICE,
Total = Math.Round(line.QUANTITY * line.SALE_PRICE, 2)
)i
detailBinding.DataSource = lines.ToBindingList();

> T [T > > m» m» mp mp mp mp mp mp mpy e

We use the InvoicelLineView class as an extension:

public class InvoiceLineView {

public int Id { get; set; }

public int Invoice_Id { get; set; }
public int Product_Id { get; set; }
public string Product { get; set; }
public decimal Quantity { get; set; }
public decimal Price { get; set; }
public decimal Total { get; set; }

S~ T I mp mp mp m mp

Unlike the InvoiceView class, this one has no method for loading one current
record. In our example, the speed of reloading the detail grid it is not crucial,
because one document does not contain thousands of items. Implementing this
method is optional.

Now we will add a special property for retrieving the current line of the document selected in the
detail grid.

106

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

public InvoiceLineView CurrentinvoiceLine {
= get {
return (InvoiceLineView)detailBinding.Current;

}

== [Th T [TI

4.7.4. Working with Stored Procedures

The methods we will use for adding, editing and deleting illustrate how to work with stored
procedures in Entity Framework. As an example, this is the method for adding a new record:

private void btnAddInvoiceLine_Click(object sender, EventArgs e) {
E var dbContext = AppVariables.getDbContext();
E // get current invoice
E var invoice = dbContext.INVOICES.Find(this.Currentinvoice.d);
E if (invoice.PAYED == 1) {
E MessageBox.Show("The change is not possible, the invoice has already been paid.",
"Error");
E return;
E}
E // create invoice position
E var invoiceLine = dbContext.INVOICE_LINES.Create();
E invoiceLine.INVOICE_ID = invoice.INVOICE_ID;
E // create the position editor of the invoice
E using (InvoiceLineEditorForm editor = new InvoiceLineEditorForm()) {
E editor.Text = "Add invoice line";
editor.InvoiceLine = invoiceLine;
/l Form Close Handler
editor.FormClosing += delegate (object fSender, FormClosingEventArgs fe) {
if (editor.DialogResult == DialogResult.OK) {
try {
Il create SP parameters
var invoiceldParam = new FbParameter("INVOICE_ID",
FbDbType.Integer);
var productldParam = new FbParameter("PRODUCT _ID",
FbDbType.Integer);
var quantityParam = new FbParameter("QUANTITY", FbDbType.Integer);
[initial parameters values
invoiceldParam.Value = invoiceLine.INVOICE_ID;
productldParam.Value = invoiceLine.PRODUCT _ID;
guantityParam.Value = invoiceLine.QUANTITY;
/I execute stored procedure
dbContext.Database.ExecuteSqlCommand(
"EXECUTE PROCEDURE SP_ADD_INVOICE_LINE("
+"@INVOICE_ID, @PRODUCT_ID, @QUANTITY)",
invoiceldParam,
productldParam,
gquantityParam);
/I refresh grids

[T e e e e e e [T T T T T T T T [T T e me me me me mpm

107

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

/I reload current invoice record
Currentinvoice.Load(invoice.INVOICE_ID);
/l reload all record in detail grid
LoadInvoiceLineData(invoice.INVOICE_ID);
/I refresh all related data
masterBinding.ResetCurrentltem();

}

catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");
/I Do not close the form to correct the error
fe.Cancel = true;

}
}
15
editor.ShowDialog(this);
}

S~ [T M M e My e mp mp e mpy e oy oy e oy oy

With our example, an update of the master grid record will be needed because one of its fields
(TotalSale) contains aggregated information derived from the detail lines of the document. This is
how we do that:

private void btnEditinvoiceLine_Click(object sender, EventArgs e) {
E var dbContext = AppVariables.getDbContext();
E // get current invoice
var invoice = dbContext.INVOICES.Find(this.Currentinvoice.ld);
if (invoice.PAYED == 1) {
MessageBox.Show("The change is not possible, the invoice has already been paid.",
"Error");
return;
}
/I get current invoice position
var invoiceLine = invoice.INVOICE_LINES
.Where(p => p.INVOICE_LINE_ID == this.CurrentinvoiceLine.ld)
.First();
/I create invoice position editor
using (InvoiceLineEditorForm editor = new InvoiceLineEditorForm()) {
editor.Text = "Edit invoice line";
editor.InvoiceLine = invoiceLine;
// form close handler
editor.FormClosing += delegate (object fSender, FormClosingEventArgs fe) {
if (editor.DialogResult == DialogResult.OK) {
try {
/I create parameters
var idParam = new FbParameter("INVOICE_LINE_ID", FbDbType.Integer);
var quantityParam = new FbParameter("QUANTITY", FbDbType.Integer);
[/l initial parameters values
idParam.Value = invoiceLine.INVOICE_LINE_ID;
guantityParam.Value = invoiceLine.QUANTITY;

M e e e e e T e e e e e e e e e e oy e e e e e rmp

108

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

/I execute stored procedure
dbContext.Database.ExecuteSglCommand(
"EXECUTE PROCEDURE SP_EDIT_INVOICE_LINE("
+ "@INVOICE_LINE_ID, @QUANTITY)",
idParam,
guantityParam);
/I refresh grids
Il reload current invoice record
Currentinvoice.Load(invoice.INVOICE_ID);
/l reload all records in detail grid
LoadInvoiceLineData(invoice.INVOICE_ID);
/I refresh all related controls
masterBinding.ResetCurrentltem();
}
catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");
/I Do not close the form to correct the error
fe.Cancel = true;

}
}
15
editor.ShowDialog(this);
}

S~ TP M>>I M M M M T T T TP T TP [T [T TP M M M M M mp mp

Deleting an Invoice Detail Line

The method for deleting a detail record is implemented as follows:

109

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

private void btnDeletelnvoicelLine_Click(object sender, EventArgs e) {
var result = MessageBox.Show(
" Are you sure you want to delete the invoice item?",
"Confirmation",
MessageBoxButtons.YesNo,
MessageBoxlcon.Question);
if (result == DialogResult.Yes) {
var dbContext = AppVariables.getDbContext();
Il get current invoice
var invoice = dbContext.INVOICES.Find(this.Currentinvoice.ld);
try {
if (invoice.PAYED == 1)
throw new Exception("It is not possible to delete the entry, the invoice is
aid.");
Il create parameters
var idParam = new FbParameter("INVOICE_LINE_ID", FbDbType.Integer);
[/l initialize parameters values
idParam.Value = this.CurrentinvoiceLine.ld;
/I execute stored procedure
dbContext.Database.ExecuteSqlCommand(
"EXECUTE PROCEDURE SP_DELETE_INVOICE_LINE(@INVOICE_LINE_ID)",
idParam);
/[update grids
/l reload current invoice
Currentinvoice.Load(invoice.INVOICE_ID);
/I reload all records in detail grids
LoadInvoiceLineData(invoice.INVOICE_ID);
/I refresh related controls
masterBinding.ResetCurrentltem();
}
catch (Exception ex) {
/I display error
MessageBox.Show(ex.Message, "Error");

}
}

>~ TP MMM MMM MMM M TP TP TP TP TP TP TP M TP M M M M M M M M M T T T [T

4.7.5. Showing Products for Selection

In the methods for adding and editing invoice lines we used the form. For displaying products, we
will use a TextBoxcontrol.

110

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

o InvoicelineEditorForm @lﬂ“ﬂl

Product

il

Ciost Huantity

oK Cancel

Figure 27. Product form

A click on the button next to the TextBox will open a modal form with a grid for selecting products.
The same modal form created for displaying the products is used for selecting them. The click
handler code for the embedded button that initiates the form is:

public partial class InvoiceLineEditorForm : Form {
public InvoiceLineEditorForm() {
InitializeComponent();

m [Ty [T

}

m

public INVOICE_LINE InvoiceLine { get; set; }

private void InvoiceLineEditorForm_Load(object sender, EventArgs e) {
if (this.InvoiceLine.PRODUCT != null) {
edtProduct.Text = this.InvoiceLine.PRODUCT.NAME;
edtPrice.Text = this.InvoiceLine.PRODUCT.PRICE.ToString("F2");
btnChooseProduct.Click -= this.btnChooseProduct_Click;
}
if (this.InvoiceLine.QUANTITY == 0)
this.InvoiceLine.QUANTITY =1;
edtQuantity.DataBindings.Add("Value", this.InvoiceLine, "QUANTITY");

™ e ey e e e e my mp

}

private void btnChooseProduct_Click(object sender, EventArgs e) {
GoodsForm goodsForm = new GoodsForm();
if (goodsForm.ShowDialog() == DialogResult.OK) {
InvoiceLine.PRODUCT _ID = goodsForm.CurrentProduct.ld;
edtProduct.Text = goodsForm.CurrentProduct.Name;
edtPrice.Text = goodsForm.CurrentProduct.Price. ToString("F2");

}
}

> [T> [T> [T Mmp mp mp mp mp

111

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

4.8. Working with Transactions

Whenever we call the SaveChanges()method while adding, updating or deleting, Entity Framework
starts and ends an implicit transaction. Since we use disconnected data access, all operations are
carried out within one transaction. Entity Framework starts and ends a transaction automatically

for each data retrieval. We will take the following example to illustrate how automatic transactions
work.

Suppose we need to make a discount on goods selected in the grid. Without explicit transaction
management, the code would be as follows:

var dbContext = AppVariables.getDbContext();

foreach (DataGridViewRow gridRows in dataGridView.SelectedRows) {
int id = (int)gridRows.Cells["ld"].Value;

/I here there is an implicit start and the completion of the transaction
var product = dbContext. PRODUCTS.Find(id);

/I discount 10%

decimal discount = 10.0m;

product.PRICE = product.PRICE * (100 - discount) /100;

[T T [T [T [Ty [T

}

/I here there is an implicit start and the completion of the transaction
I/l all changes occur in one transaction

dbContext.SaveChanges();

LetOs say we select 10 products. Ten implicit transactions will be used for finding the products by
their identifiers. One more transaction will be used to save the changes.

If we control transactions explicitly, we can use just one transaction for the same piece of work. For
example:

112

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

var dbContext = AppVariables.getDbContext();
Il explicit start of a default transaction
using (var dbTransaction = dbContext.Database.BeginTransaction()) {
string sql =
"UPDATE PRODUCT " +
"SET PRICE = PRICE * ROUND((100 - @DISCOUNT)/100, 2) " +
"WHERE PRODUCT_ID = @PRODUCT_ID";
try {
Il create query parameters
var idParam = new FbParameter("PRODUCT _ID", FbDbType.Integer);
var discountParam = new FbParameter("DISCOUNT", FbDbType.Decimal);
/l create a SQL command to update records
var sqlCommand = dbContext.Database.Connection.CreateCommand();
sglCommand.CommandText = sq|;
Il specify which transaction to use
sglCommand.Transaction = dbTransaction.UnderlyingTransaction;
sglCommand.Parameters.Add(discountParam);
sglCommand.Parameters.Add(idParam);
Il prepare query
sqlCommand.Prepare();
/I for all selected records in the grid
foreach (DataGridViewRow gridRows in dataGridView.SelectedRows) {
int id = (int)gridRows.Cells["Id"].Value;
[/l initialize query parameters
idParam.Value = id;
discountParam.Value = 10.0m; // discount 10%
I/l execute sql statement
sqlCommand.ExecuteNonQuery();
}
dbTransaction.Commit();
}
catch (Exception ex) {
dbTransaction.Rollback();
MessageBox.Show(ex.Message, "error");

}

S~ TP MMM MMM MMM TP TP TP TP TP T T TP M M M M M M M M T T T T Ty T

Our code starts the transaction with the default parameters. To specify your own parameters for a
transaction, you should use the UseTransaction method.

private void btnDiscount_Click(object sender, EventArgs e) {
E DiscountEditorForm editor = new DiscountEditorForm();
editor.Text = "Enter discount”;
if (editor.ShowDialog() != DialogResult.OK)

return;

m [y [T

bool needUpdate = false;
var dbContext = AppVariables.getDbContext();
E var connection = dbContext.Database.Connection;

T [T

113

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

E // explicit start of transaction
E using (var dbTransaction = connection.BeginTransaction(lsolationLevel.Snapshot)) {
dbContext.Database.UseTransaction(dbTransaction);
string sql =
"UPDATE PRODUCT " +
"SET PRICE = ROUND(PRICE * (100 - @DISCOUNT)/100, 2) " +
"WHERE PRODUCT_ID = @PRODUCT_ID";
try {
/I create query parameters
var idParam = new FbParameter("PRODUCT _ID", FbDbType.Integer);
var discountParam = new FbParameter("DISCOUNT", FbDbType.Decimal);
/l create a SQL command to update records
var sgqlCommand = connection.CreateCommand();
sglCommand.CommandText = sq|;
/I specify which transaction to use
sglCommand.Transaction = dbTransaction;
sglCommand.Parameters.Add(discountParam);
sglCommand.Parameters.Add(idParam);
/I prepare statement
sqlCommand.Prepare();
/I for all selected records in the grid
foreach (DataGridViewRow gridRows in dataGridView.SelectedRows) {
intid = (int)gridRows.Cells['PRODUCT _ID"].Value;
/I initialize query parameters
idParam.Value = id;
discountParam.Value = editor.Discount;
/I execute SQL statement
needUpdate = (sqlCommand.ExecuteNonQuery() > 0) || needUpdate;
}

dbTransaction.Commit();

}

catch (Exception ex) {
dbTransaction.Rollback();
MessageBox.Show(ex.Message, "error");
needUpdate = false;

}

}
/I refresh grid

if (needUpdate) {
// for all selected records in the grid
foreach (DataGridViewRow gridRows in dataGridView.SelectedRows) {
var product = (PRODUCT)bindingSource.List[gridRows.Index];
dbContext.Refresh(RefreshMode.StoreWins, product);
}

bindingSource.ResetBindings(false);

}

>~ TP MMM MMM MMM AP M TP TP TP TP MM MO M M M My M M M M M T T T T TP [T [T [T [T M M M M M mp mp Ty

ThatOs it. Now only one transaction is used for the entire set of updates and there are
unnecessary commands for finding data.

114

no

Chapter 4. Developing Firebird Applications with Microsoft Entity Framework

All that is left to do is to add a dialog box for entering the value of the discount and code to update
data in the grid. Try to do it on your own.

4.9. The Result

B8l Example — O X
Catalogs Registers Settings

L re A=k

Abigail Thomas 04.08.201516:57 | 3872435

199958 Emma Davis

159957 | B8 Add invoice line

199956

199995 Product m Goods

159954 | ; =
139993 | Cost Quartity +fx|@\ﬁ|

Name Price
3.2mm RIVET Pa...
3/8inch SLOTT...
3/8inch SLOTT...
4mm RIVET Csk.... | 7.63
GBAFULLNUT ... |0.9

6BA SHAKEPRO... | 0,69

ENCLOSURE SY... GBASLOTTED 5. |367
ENCLOSURE 5Y... |20 37.81 756.2 6BASLOTTED 5. | 15.79
ENCLOSURE SY... |2 16861 3373 conciaTTonc
GLENSOUNDC... |7 1468.8 1028

ENCLOSURE SY... |3 849.15 2547

NTI EXCEL TES... |2 30906 6181

HOFBAUER ME... |15 97.42 1461

CANFORD PHA... |11 534,28 527708

Figure 28. The result of the Entity Framework project

4.10. Source Code

You can get the source code for the sample application using this link: FBFormAppExample.zip

115

https://www.firebirdsql.org/file/documentation/examples/en/fbdevgd30/FBFormAppExample.zip

Chapter 5. Creating Web Applications in Entity Framework with MVC

Chapter 5. Creating Web Applications Iin
Entity Framework with MVC

This chapter will describe how to create web applications with Firebird as the back-end, using
Microsoft? Entity Framework? and the Visual Studio 2015 environment.

We examine the specifics of creating a web application with this framework. The basic principles
for working with Entity Framework and Firebird are described in the previous chapter, Creating
Applications with Microsoft Entity Framework

5.1. The .NET Frameworks

The .NET platform offers two main frameworks for creating web applications developed as Oactive
server pagesO (ASP): ASP.NET Web Forms and ASP.NET MVC. As | prefer using the MVC pattern, it is
this technology that we will be examining.

5.2. The ASP.NET MVC Platform

The ASP.NET MVC platform is a framework for creating websites and web applications on the
model-view-controller (MVC) pattern. The concept underlying the MVC pattern breaks down an
application into three parts:

Controller

Controllers work with the model and provide interaction with the user. They also provide view
options for displaying the user interface. In an MVC application, views only display data while
the controller handles the input and responds to user activities.

As an example, the controller can process string values in a query and send them to the model,
which can use these values to send a query to the database.

View
the visual part of applicationOs user interface. The user interface is usually created to reflect the
data from the model.

Model

Model objects are the parts of the application that implement the logic for working with the
application data. Model objects typically receive the status of the model and save it in the
database.

5.2.1. Model-View-Controller Interaction

Interaction between these components is illustrated in the following general diagram:

116

Chapter 5. Creating Web Applications in Entity Framework with MVC

Model

contains business logic

Controller
interacts with Model to
create data for the View

View
renders content to the user

and relays user commands
to the Controller

Figure 29. Interaction between M-V-C parts

The MVC pattern supports the creation of applications whose logical aspects"N"input, business and
interface"N"are separated but interact closely with one another. The diagram illustrates the location
of each logic type in the application:

¥ the user interface in the view

¥ the input logic in the controller

¥ the business logic in the model
This separation allows you to work with complex structures while developing the application

because it ensures discrete implementation of each aspect. The developer can focus on creating a
view separately from implementing the business logic.

More comprehensive information about the ASP.NET MVC technology can be found at the website
of the ASP.NET community .

5.3. Software Stack

Along with the libraries for working with Firebird, Entity Framework and MVC.NET, you will need a
number of JavaScript libraries to support a responsive interface, such as jquery, jquery-ui,
Bootstrap, jqGrid. In this example, we have tried to make a web application whose interface is
similar to a desktop Ul, by employing grids for views and modal windows for data input.

5.3.1. Preparing Visual Studio 2015 for Firebird Work

Some essential steps are needed before you can start working in Visual Studio with Firebird. The
preparation process is described in detail in the previous chapter, under the topic Setting Up for
Firebird in Visual Studio 2015

5.4. Creating a Project

The Following topics will show how to use the Visual Studio wizards to create the framework of an

117

https://www.asp.net/mvc/overview

Chapter 5. Creating Web Applications in Entity Framework with MVC

MVC.NET application.

Open File YNew YProject in Visual Studio 2015 and create a new project named FBMVCExample

Mew Project
P Recent
4 |nstalled
4 Visual C&¥
rsal
lassic Desktop
Web
.NET Core
MET Standard

Cloud

b Other Project T

i Online

Mot finding what yeu are locking for?

Name: FEMVCExample2

Location: E\My Program

Selution name: xample

MET Framework 4.6.1 * Sort by:

Default

¥

@ ASP.MNET Core Web Application

@ | ASP.MET Web Application (NET Framework)

Figure 30. Create the FBMVCExample project

118

Type: Visual C&

Project templates for creating NET
applications. can create ASP.NET Web
Forms, M r' Web APl applications and
add many other features in ASP.NET,

Cancel

Chapter 5. Creating Web Applications in Entity Framework with MVC

Mew ASP.MET Web Application - FBMVCExample2 ? X
A project template for creating ASP.NET MVC
ASENET 4.6.1 Templates applications, ASP.NET MVC allows you to build
4 4 4 4 4 applications using the Model-View-Controller
@FJ @FJ m m m architecture, ASP.MET MVC includes many features that
. enable fast, test-driven development for creating
Empty \Web Forms S Web AP Slngl_e F'a_ge applications that use the latest standards.
Application
Learn more
4
o
Azure AP| App EChange ﬂuthenticationé
Authentication: Individual User Accounts
Add folders and core references for:
L] webForms & MvC [Web AP
] add unit tests
Test project name: |FEMVCExamplel. Tests
oK | | Cancel
Figure 31. Change authentication setting
For now, we will create a web application with no authentication, so click the ['Change
Authentication!] button to disable authentication. We will get back to this issue a bit later .
Change Authentication x
For applications that don't require any user authentication.
Learn more
O Indnidual User Accounts
) Work or School Accounts
O Windows Authentication
0K | | Cancel

Figure 32. Disable authentication for now

5.4.1. Structure of the Project

The project that you create will have virtually no functionality, but it already has its basic structure,
described briefly in the following table:

Table 6. Basic Structure of the MVC Project

119

Chapter 5. Creating Web Applications in Entity Framework with MVC

Folder or File Purpose

/App_Datafolder Where private web application data, such as XML files or
database files, are located.

[App_Start folder Contains some main configuration settings for the project,
including the definitions of routes and filters.

/Content folder Static content goes in here, such as CSS files and images. Itis an
optional convention. You can store CSS files anywhere you want.

/Controllers folder Controller classes are saved here. It is an optional convention.
You can store controller classes anywhere.

/Models folder View model and business model classes are saved here although
it is better for all applications (except for the simplest ones) to
define a business model in a separate project. It is an optional
convention. You can store model classes anywhere you like.

/Scripts folder Stores the JavaScript libraries being used in the application. By
default, Visual Studio adds jQuery libraries and several other
popular JavaScript libraries. It is an optional convention.

/Views folder Stores the views and partial views. They are commonly grouped
together in sub-folders name for the controllers they are
connected with.

/Views/Shared subfolder Stores layouts and views not specific to one controller.

/Views/Web.config file Contains the configuration information that ensures that views
are processed within ASP.NET and not by the IIS web server. Also
contains the namespaces imported into views by default.

/Global.asax file The global class of an ASP.NET application. A configuration for a
route is registered in the file with its code (Global.asax.cs). Also
contains also any code that is supposed to be executed during the
launch or termination of an application or when an unhandled
exception arises.

/Web.config file The configuration file for the application.

5.4.2. Adding the Missing Packages
We will use the NuGet package manager to add the missing packages:

¥ FirebirdSqgl.Data.FirebirdClient

¥ EntityFramework (automatically added by the wizard)
¥ EntityFramework.Firebird

¥ Bootstrap (automatically added by the wizard)

¥ jQuery (automatically added by the wizard)

¥ jQuery.Ul.Combined

¥ Respond (automatically added by the wizard)

120

Chapter 5. Creating Web Applications in Entity Framework with MVC

¥ Newtonsoft.Json
¥ Moderninzr (automatically added by the wizard)

¥ Trirand.jqGrid

Not all packages provided by NuGet are the latest version of the libraries. It is
I especially true for JavaScript libraries. You can install the latest versions of
JavaScript libraries using a content delivery network (CDN) or by just downloading
them and replacing the libraries provided by NuGet.

Right-click the project name in Solution Explorer and select the Manage NuGet Packages item in
the drop-down menu.

M- B-SCIB

fa] Solution 'FBMVCExample' (1 project)
« =0 coamfCExample
Build rvice References
Rebuild operties
Clean ferences
yp_Data
p_Start

LY
W IEwW

Analyze
Convert

Publish...

Configure Application Insights...

Overview

Scope to This

Mew Solution Explorer View
Add

Manage MuGet Packages...

Manage Bower Packages...

Set as StartUp Project

ntent

wntrollers

nts

odels

oviders

ripts

SWE
plicationlnsights.config
pVariables.cs
/ICON.ICO

obal.asax
ckages.config
oject_Readme.html
eb.config

Figure 33. Select Manage NuGet Packages

Find and install the necessary packages in the package manager.

121

Chapter 5. Creating Web Applications in Entity Framework with MVC

MNuGet: WindowsFormsAppl +# > Forml.cs [Design]
Installed Updates NuGet Package Manager: WindowsFormsApp1

Firebird5ql.Data.FirebirdClient |:| Include prerelease Package source: nuget.org

E FirebirdSql.Data.FirebirdClie ‘

FirebirdSql.Data.FirebirdClient @ by FirebirdSOL, 197K downloads ~ v5.11.0

Firebird ADO.MET Data provider
Version: Latest stable 5.11.0 ~ Install

ling2db.Firebird by Igor Tkachev, 5,3K downloads

This package includes a T4 template to generate data models for Firebird v) Options
database and references to the ling2db and Firebird5gl.Data.FirebirdClient nu...

ndo.firebird by Mirko Matytschak, 266 downloads 0 Description
NDO Provider dil for connection with FirebirdSql.Data. FirebirdClient Firebird ADO.NET Data provider

Version: 5.11.0
SD.LLBLGen.Pro.DQE.Firebird @ utions Design bv, 7,96K downl v3.3.0 Author(s): FirebirdSOL

This package contains the Dynamic Query Engine for Firebird. License:

SouchProd.Data.FirebirdClient b,
Fork of the FirebirdClient -
ve is built agains MET.

Project URL:
EntityFrameworkCore.Firebird5ql by Rafael Almeida, 1,89K downlo: v2.0.10

EntityFrameworkCore.Firebi irebird5Q) ameworkCore Entity Report Abuse:

firebird, firebirsql, adonet,
database, birdclient

Figure 34. Select packages for installing

5.5. Creating an EDM

If you already have a Windows Forms application that uses Entity Framework, you can just copy
model classes to the Modelsfolder. Otherwise, you have to create them from scratch. The process of
creating an EDM is described in the previous chapter in the topic Creating an Entity Data Model
(EDM).

There is one more small difference: your response to the EDM wizardOs question about how to store
the connection string:

122

Chapter 5. Creating Web Applications in Entity Framework with MVC

Entity Data Model Wizard

i .) Choose Your Data Connection
Which data connection should your application use to connect to the database?

localhost (exarmples) e Mew Connection...

This connection string appears to contain sensitive data (for example, a password) that is required to connect
to the database. Storing sensitive data in the connection string can be a security risk, Do you want to include

this sensitive data in the connection string?

(® Mo, exclude sensitive data from the connection string. | will set it in my application code.
() Yes, include the sensitive data in the connection string.

Connection string:

character set=UTF&;port number=3033;data source=localhost;initial catalog=examples;user id=5Y5DBA

Save connection settings in App.Config as:

DhModel

< Previous Mext = Cancel

Figure 35. Configuring connection string storage

When we create a web application, all users will work with the database using a single account, so
select Yes for this question. Any user with enough privileges can be specified as the username. It is
advisable not to use the SYSDBA user because it has more privileges than are required for a web

application to work.

You can always change the username in the application when it is ready for testing and
deployment, by just editing the connection string in the AppName.exe.confapplication configuration

file.

The connection string will be stored in the connectionStrings section and will look approximately as

follows:

123

Chapter 5. Creating Web Applications in Entity Framework with MVC

<add name="DbModel"

connectionString="character set=UTF8; data source=localhost;
initial catalog=examples; port number=3050;

user id=sysdba; dialect=3; isolationlevel=Snapshot;
pooling=True; password=masterkey;"
providerName="FirebirdSql.Data.FirebirdClient" />

T T [Ty mp mp

5.6. Creating a User Interface

Our first controller will be used to display customer data and accept input for searches, inserts,
edits and deletes.

5.6.1. Creating the Controller for the Customer Interface

Action("Index™): &1 View in Browser (Microsoft Edge) Ctrl+Shift+W

Browse With...
Controller... Add

Mew ltem... Ctrl+Shift+A Scope to This

Existing Item... Shift+Alt+ A 1 Mew Solution Explorer View

Mew Scaffolded ltem... Exclude From Project

Mew Folder Ctrl+X
Add ASP.MET Folder vy Ctrl+C
Docker Support

REST API Client...

Web API Controller Class (v2.1) Rename
Class... Open Folder in File Explorer

Properties Alt+Enter

Controllers Folder Proy

Figure 36. Select Add YController

Add Scaffold >

4 |nstalled

MVC 5 Controller - Empty :W'C 3 Conl::roller with views, using Entity
Tamewor
zoft

Controller

MVC 5 Controller with read/write actions
ontroller with actions and Razor
MVC 5 Controller with views, using Entity Framework o o create, read, upda €, and list
om an Entity Framewaork data
Web AFI 2 Controller — Empty
ld: MvcControllerWithContextScaffolder

Web API 2 Controller with actions, using Entity Framework

Web API 2 Controller with read/write actions

Web AFI 2 OData v3 Controller with actions, using Entity Framework

Web API 2 OData v3 Controller with read/write actions

Figure 37. Creating a controller (1)

124

Chapter 5. Creating Web Applications in Entity Framework with MVC

Add Controller

Views:

Model class: CUSTOMER (FEMVCExamplel.Models) o
Data context class: DbModel (FEMVCExamplel. Models) W 4
[] Use async controller actions
Generate views
Reference script libraries
[] Use a layout page:
Contreller name: CUSTOMERController
Add Cancel

Figure 38. Creating a controller (2)

Once it is done, the controller CustomerController will be created, along with five views displaying:

1. the customer list

2. the customer details for one customer
3. create (add) customer form

4. edit customer form

5. delete customer form

Since the Ajax technology and the jqGrid library will be used extensively in our project, the first
view, for displaying the customer list as a table, will be enough for our purposes. The rest of the

operations will be performed with jqGrid.

Limiting Overhead

We want to be aware of ways to limit the overhead involved in passing data and connections back

and forth over the wide-area network. There are techniques that can help us with this.

Limiting Returned Data

The customer list may turn out to be quite big. The entire list from a big table is usually not
returned in web applications because it could make the process of loading the page seriously slow.
Instead, the data are usually split into pages or are dynamically loaded when the user scrolls down

to the end of the page (or grid). We will use the first option in our project.

125

Chapter 5. Creating Web Applications in Entity Framework with MVC
Limiting Connections

Another characteristic of web applications is that they do not keep any permanent connections to
the database because the life of the page generation script is no longer than the time it takes to
generate a response to the user request. A connection to the database is actually a rather expensive
resource, so we have to save it. Of course, there is a connection pool for reducing the time it takes to
establish a connection to the database, but it is still advisable to make a connection to the database
only when it is really necessary.

Let the Browser Help You!

One of the ways to reduce the amount of interaction with the database is to do the correctness
checking on the user input in the browser. Fortunately, modern HTML5 and JavaScript libraries can
do just that. For example, you can make the browser check for the presence of a required field or
the maximum length of a string field in the input form.

5.7. Adapting the Controller to jgqGrid

Now, we are going to change the CustomerController controller so that it works with jqGrid. The
code is quite lengthy, so track the comments to get a sense of the way the controller works.

public class CustomerController : Controller

{
E private DbModel db = new DbModel();

E // Display view

E public ActionResult Index()
E {

E return View();

E}

E // Receiving data in JSON for grid
E public ActionResult GetData(int? rows, int? page, string sidx, string sord,
string searchField, string searchString, string searchOper)

E{

E // get the page number, the number of data displayed
E int pageNo = page ?? 1;

E int limit = rows ?? 20;

E // calculate the offset

E int offset = (pageNo - 1) * limit;

// building a query for suppliers

var customersQuery =

from customer in db. CUSTOMERS
select new

CUSTOMER_ID = customer.CUSTOMER_ID,
NAME = customer.NAME,

ADDRESS = customer.ADDRESS,

ZIPCODE = customer.ZIPCODE,

T T [Ty e e mp my [my [mp
~—

126

M MM M M M [T Mo [T [T M T T T T T TP TP T TP T T T T T T T T T T [T [T [T [T [T

™ > e mp mp

[T T e e e [me mp [y my mp

Chapter 5. Creating Web Applications in Entity Framework with MVC

PHONE = customer.PHONE
15
/[adding a search condition to the query, if it is produced
if (searchField != null)

{
switch (searchOper)
{
case "eq™
customersQuery = customersQuery.Where(
¢ => c.NAME == searchString);
break;
case "bw":
customersQuery = customersQuery.Where(
¢ => c.NAME.StartsWith(searchString));
break;
case "cn":
customersQuery = customersQuery.Where(
¢ => ¢.NAME.Contains(searchString));
break;
}
}

/I get the total number of suppliers
int totalRows = customersQuery.Count();
/l add sorting
switch (sord) {
case "asc'":
customersQuery = customersQuery.OrderBy(
customer => customer.NAME);
break;
case "desc":
customersQuery = customersQuery.OrderByDescending(
customer => customer.NAME);
break;

}

/I get the list of suppliers

var customers = customersQuery
.Skip(offset)
.Take(limit)
.TolList();

/I calculate the total number of pages
int totalPages = totalRows / limit + 1;
/I create the result for jqGrid
var result = new
{
page = pageNo,
total = totalPages,
records = totalRows,
rows = customers

127

Chapter 5. Creating Web Applications in Entity Framework with MVC

/I convert the result to JSON
return Json(result, JsonRequestBehavior.AllowGet);

}

T [Ty [T

E // Adding a new supplier
E [HttpPost]
E [ValidateAntiForgeryToken]
E public ActionResult Create(
[Bind(Include = "NAME,ADDRESS,ZIPCODE,PHONE")] CUSTOMER customer)
E{
= // check the correctness of the model
if (ModelState.IsValid)
{
/I get a new identifier using a generator
customer.CUSTOMER_ID = db.NextValueFor("GEN_CUSTOMER_ID");
/I add the model to the list
db.CUSTOMERS.Add(customer);
/I save model
db.SaveChanges();
/I return success in JSON format
return Json(true);
}
else {
[/l join model errors in one string
string messages = string.Join("; ", ModelState.Values
.SelectMany(x => x.Errors)
.Select(x => x.ErrorMessage));
/I return error in JSON format
return Json(new { error = messages });

}
}

[T e [T e [T T [T T e me me me me me me me e me e mp

E // Editing supplier
E [HttpPost]
E [ValidateAntiForgeryToken]
E public ActionResult Edit(
[Bind(Include = "CUSTOMER_ID,NAME,ADDRESS,ZIPCODE,PHONE")] CUSTOMER customer)
E{
E // check the correctness of the model
if (ModelState.IsValid)
{
/[l mark the model as modified
db.Entry(customer).State = EntityState.Modified;
/I save model
db.SaveChanges();
I return success in JSON format
return Json(true);
}
else {
/I join model errors in one string
string messages = string.Join("; ", ModelState.Values

[T > [T [T e e me me me me me e m

128

Chapter 5. Creating Web Applications in Entity Framework with MVC

.SelectMany(x => x.Errors)
.Select(x => x.ErrorMessage));
[return error in JSON format
return Json(new { error = messages });

}
}

™ m» e mpy mp mp

E // Deleting supplier

E [HttpPost]

E [ValidateAntiForgeryToken]

E public ActionResult Delete(int id)

E{

/I find supplier by id

CUSTOMER customer = db.CUSTOMERS.Find(id);
/I delete supplier
db.CUSTOMERS.Remove(customer);
/I save model

db.SaveChanges();

I return success in JSON format
return Json(true);

}

T > e Ty mp e ey e mp

protected override void Dispose(bool disposing)
{

if (disposing)
{
db.Dispose();
}
base.Dispose(disposing);

}

> [Tv TP TP [T» [T» M M [mp

The Index method is used to display the Views/Customer/Index.cshtml view. The view itself will be
presented a bit later . This view is actually an html page template with markup and JavaScript for
initiating jgGrid. The data itself will be obtained asynchronously in the JSON format, using the Ajax
technology. The selected type of sorting, the page number and the search parameters will
determine the format of an HTTP request that will be handled by the GetData action. The
parameters of the HTTP request are displayed in the input parameters of the GetDatamethod. We
generate a LINQ query based on these parameters and send the retrieved result in the JSON format.

Various libraries can assist with parsing the parameters of a query generated by
jgGrid and make it easier to build the model. We have not used them in our
examples so the code might be somewhat cumbersome. You can always improve it,
of course.

The Create method is used to add a new customer record. The method has the [HitpPost] attribute
specified for it to indicate that the parameters of the HTTP POST request () are to be displayed on
the Customer model. Examine the following line:

129

Chapter 5. Creating Web Applications in Entity Framework with MVC
[Bind(Include = "NAME,ADDRESS,ZIPCODE,PHONE")] CUSTOMER customer

Here Bind specifies which parameters of the HTTP request are to be displayed in the properties of
the model.

5.7.1. The Attribute ValidateAntiforgeryToken

Note the ValidateAntiforgeryToken attribute. It is used to prevent forging requests between websites
by verifying the tokens when the action method is called. The presence of this attribute requires
that the HTTP request has an additional parameter named __RequestVerificationToken .

This parameter is automatically added to each form where the @Html.AntiForgeryToken() helper is
specified. However, the jqGrid library uses dynamically generated Ajax requests rather than
previously created web forms. To fix that, we need to change the shared view
Views/Shared/_Layout.cshtml as follows:

<IDOCTYPE html>

<htmlI>

<head>

E <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

E <meta charset="utf-8" />

E <meta name="viewport" content="width=device-width, initial-scale=1.0">

E <titte>@ViewBag.Title - ASP.NET application</title>

E @Styles.Render("~/Content/css")

E @Scripts.Render("~/bundles/modernizr")

E @Scripts.Render("~/bundles/jquery")

E @Scripts.Render("~/bundles/jquery-ui")

<link href="~/Content/jquery.jgGrid/ui.jqgrid.css"
rel="stylesheet" type="text/css" />

<link href="~/Content/jquery.jgGrid/ui.jggrid-bootstrap.css"
rel="stylesheet" type="text/css" />

<link href="~/Content/jquery.jgGrid/ui.jggrid-bootstrap-ui.css"
rel="stylesheet" type="text/css" />

<script src="~/Scripts/jquery.jqGrid.min.js"

type="text/javascript"></script>
<script src="~/Scripts/i18n/grid.locale-en.js"
type="text/javascript"></script>

T [T [Ty My e [me my [y my mp

</head>

<body>

E @Html.AntiForgeryToken()
E <script>

function GetAntiForgeryToken() {
var tokenField =
$("input[type="hidden'][name$="RequestVerificationToken"");
if (tokenField.length == 0) {
return null;
} else {
return {

™ M e M e e

130

T [T [T [T [Ty

> M [T [T [T [T [T T T M T T T T T T T T T T T T e

T [T [T [T T T T T T T T T T T T T T e T e

Chapter 5. Creating Web Applications in Entity Framework with MVC

name: tokenField[0].name,
value: tokenField[0].value
h
}
}

/I add prefilter to all ajax requests
/it will add to any POST ajax request
/I AntiForgery token
$.ajaxPrefilter(
function (options, localOptions, jgXHR) {
if (options.type '=="GET") {
var token = GetAntiForgeryToken();
if (token !'==null) {
if (options.data.indexOf(""X-Requested-With") === -1) {
options.data = "X-Requested-With=XMLHttpRequest"
+ ((options.data ==="") ? " : "&" + options.data);
}
options.data = options.data + "&" + token.name + '='
+ token.value;

}
}

}
);
I initialize the general properties of the jgGrid module
$.jgrid.defaults.width = 780;
$.jgrid.defaults.responsive = true;
$.jgrid.defaults.styleUl = 'Bootstrap’;

</script>

<I-- Navigation menu -->
<div class="navbar navbar-inverse navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">

<span class="icon-bar"7gt;
</button>
</div>>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav">
@Html.ActionLink("Customers", "Index", "Customer")
@Html.ActionLink("Goods", "Index", "Product")
@Html.ActionLink("Invoices", "Index", "Invoice")

</div>
</div>
</div>

131

Chapter 5. Creating Web Applications in Entity Framework with MVC

<div class="container body-content">
@RenderBody()
<hr />
<footer>
<p>© @DateTime.Now.Year - ASP.NET application</p>
</footer>
</div>

™ M e M e m e

E @Scripts.Render("~/bundles/bootstrap")
E @RenderSection("scripts”, required: false)
</body>

</html>

5.8. Bundles

Bundles are used to make it easier to link JavaScript scripts and CSS files. You can link CSS bundles
with the Styles.Render helper and script bundles with the Scripts.Render helper.

Bundles are registered in the BundleConfig.cs file located in the App_Start folder:

public static void RegisterBundles(BundleCollection bundles)

{

E bundles.Add(new ScriptBundle("~/bundles/jquery").Include(

E "~/Scripts/jquery-{version}.js"));

E bundles.Add(new ScriptBundle("'~/bundles/jqueryval").Include(

E "~/Scripts/jquery.validate*"));

E bundles.Add(new ScriptBundle('~/bundles/jquery-ui").Include(

E "~/Scripts/jquery-ui-{version}.js")):;

E bundles.Add(new ScriptBundle("~/bundles/modernizr").Include(

E "~/Scripts/modernizr-*"));

E bundles.Add(new ScriptBundle("~/bundles/bootstrap").Include(

E "~/Scripts/bootstrap.js”,
"~/Scripts/respond.js"));

bundles.Add(new StyleBundle("~/Content/css").Include(
"~/Content/jquery-ui.min.css",
"~/Content/themes/ui-darkness/jquery-ui.min.css",
"~/Content/themes/ui-darkness/theme.css",
"~/Content/bootstrap.min.css",
"~/Content/Site.css"

)

= [Th [T [T> [T T [T T [Th M

The RegisterBundles method adds all created bundles to the bundles collection. A bundle is declared
in the following way:

new ScriptBundle("~/bundles/jquery").Include("~/Scripts/jquery-{version}.js")

132

Chapter 5. Creating Web Applications in Entity Framework with MVC

The virtual path of the bundle is passed to the ScriptBundle construct. Specific script files are
included in this bundle using the Include method.

The {version} parameter in the O ~/Scripts/jquery-{version}.js O expression is a placeholder for any
string referring to the script version. It is very handy because it allows the version of the library to

be changed later without having to change anything in the code. The system will accept the new
version automatically.

The O-/Scripts/jquery.validate* O expression fills out the rest of the string with the asterisk
character as a wildcard. For example, the expression will include two files at once in the bundle:
jquery.validate.js and jquery.validate.unobtrusive.js , along with their minimized versions,
because their names both start with O jquery.validate O.

The same applies when creating CSS bundles, using the StyleBundle class.

The full versions of the scripts and cascading style sheets should be used in the
debug mode and the minimized ones in the release mode. Bundles allow you to

n solve this problem. When you run the application in the debug mode, the
web.config files have the <compilation debug="true"> parameter. When you set this
parameter to false (the Release mode), the minimized version of JavaScript
modules and CSS files will be used instead of the full ones.

5.9. Views

Since we need only the View/Customer/Index.cshtml view out of the five created for the Customer
controller, you can delete the others from the folder.

You can see that the entire view consists of the header, the jqg table and the jgg-pager block for
displaying the navigation bar. The rest is occupied by the script for initiating the grid, the
navigation bar and the dialog box for editing records.

@

E ViewBag.Title = "Index";
}

<h2>Customers</h2>

<table id="jqg"></table>
<div id="jgg-pager"></div>

<script type="text/javascript">
$(document).ready(function () {
var dbGrid = $("#jqg").jqGrid({
url: ‘@Url.Action("GetData")', // URL to retrieve data
datatype: "json", // data format
mtype: "GET", // http type request
/I model description
colModel: [

{
label: 'Id',

T Ty [Ty e e mp my [mp [mp

133

MPMMP P MMM MO TP M M TP T T TP T T T T T T T T T T T T [T T [T T T [T T T [T TP [T TP TP TP [T> [Tp TP T T T T T T T TP

Chapter 5. Creating Web Applications in Entity Framework with MVC

name: 'CUSTOMER _ID', // field name
key: true,
hidden: true

}

{

label: ‘Name',
name: 'NAME',
width: 250,
sortable: true,
editable: true,
edittype: "text", // field type in the editor
search: true,
searchoptions: {
sopt: ['eq’, 'bw', 'cn’] // allowed search operators
h
Il size and maximum length for the input field
editoptions: { size: 30, maxlength: 60 },
/ mandatory field
editrules: { required: true }

label: 'Address’,

name: 'ADDRESS',

width: 300,

sortable: false, // prohibit sorting

editable: true,

search: false, // prohibit searching

edittype: "textarea",

editoptions: { maxlength: 250, cols: 30, rows: 4 }

label: 'Zip Code',

name: 'ZIPCODE',

width: 30,

sortable: false,

editable: true,

search: false,

edittype: "text",

editoptions: { size: 30, maxlength: 10 },

label: 'Phone’,

name: 'PHONE',

width: 80,

sortable: false,

editable: true,

search: false,

edittype: "text",

editoptions: { size: 30, maxlength: 14 },

134

[T [T e e e [me my [y my my

[T [T [T M [T [T [T T T T T T T T T T T o T e

[T T [T [T e [T [T [T [T [T [T T T T M T T T [Tp

Chapter 5. Creating Web Applications in Entity Framework with MVC

rowNum: 500, // number of rows displayed

loadonce: false, // load only once

sortname: 'NAME', // sort by default by NAME column
sortorder: "asc",

width: window.innerWidth - 80, // grid width

height: 500, // grid height

viewrecords: true, // display the number of records
caption: "Customers",

pager: 'jgg-pager' // navigation item id

h;

dbGrid.jgGrid('navGrid', '#jqg-pager’, {

search: true,
add: true,
edit: true,
del: true,
view: true,
refresh: true,
/I button labels
searchtext: "Find",
addtext: "Add",
edittext: "Edit",
deltext: "Delete",
viewtext: "View",
viewtitle: "Selected record",
refreshtext: "Refresh”

h

update("edit"),

update("add"),

update("del")

);

/l function that returns the settings of the editor
function update(act) {
return {
closeAfterAdd: true,
closeAfterEdit: true,
width: 400, // editor width
reloadAfterSubmit: true,
drag: true,
/I handler for sending the form of editing / deleting / adding
onclickSubmit: function (params, postdata) {
/I get row id
var selectedRow = dbGrid.getGridParam("selrow");
/I set URL depending on the operation
switch (act) {
case "add™:
params.url ='@Url.Action("Create")’;
break;
case "edit":
params.url = '@Url.Action("Edit")’;

135

Chapter 5. Creating Web Applications in Entity Framework with MVC

postdata. CUSTOMER_ID = selectedRow;
break;

case "del™
params.url = '@Url.Action("Delete")";
postdata. CUSTOMER_ID = selectedRow;
break;

}
h

I/ processing results of sending forms (operations)
afterSubmit: function (response, postdata) {
var responseData = response.responseJSON;
/I check the result for error messages
if (responseData.hasOwnProperty(“error")) {
if (responseData.error.length) {
return [false, responseData.error];

}
}

else {
/I refresh grid
$(this).jgGrid(
'setGridParam’,

{

datatype: ‘json’
}
).trigger(‘reloadGrid’);
}
return [true, ", OF;
}
Ji
=)
E});

</script>

> T e e e e e e e e e e e e e e oy ae oy e me me me me oy me oy me me my

It is important to configure the model properties correctly in order to display the grid properly,
position input items on the edit form, configure validation for input forms and configure the
sorting and search options. This configuration is not simple and has a lot of parameters. In the
comments | have tried to describe the parameters being used. The full description of the model
parameters can be found in the documentation for the jgGrid library in the ColModel API section.

Note that jqGrid does not automatically add hidden grid columns to the input form, though | think
it would make sense at least for key fields. Consequently, we have to add the customer identifier to
the request parameters for editing and deleting:

136

Chapter 5. Creating Web Applications in Entity Framework with MVC

case "edit"

E params.url = '@Url.Action("Edit")";

E postdata. CUSTOMER_ID = selectedRow;
E break;

case "del":

E params.url = '@Url.Action("Delete")";

E postdata. CUSTOMER_ID = selectedRow;
E break;

The working page with the list of customers will look like this:

5 [Index- npunoxenne A X 4+ W

p=
Y

< = 0O o localhost e {g

Customers Poducts Invoices Logoft

Customers

Name Address Phone

Abigail Anderson

1-026-457-5971

Figure 39. Customer list view

137

Chapter 5. Creating Web Applications in Entity Framework with MVC

n]
X

a 3 Index — npunoxenme A* X | W _

&< = 0O & localhost W {g /8

] [T I I
Customers Poducts Invoices Logoft

g

Customers

Edit Record

@
Name Abigail Robinsor| X on
Address
Zip Code
|

Phone 1-618-333-4998

K M Submit & Cancel @

Figure 40. A customer selected for editing

The controller and view for the product Ul are implemented in a similar way. We will not describe
them here in detail. You can either write them yourself or use the source code linked at the end of
this chapter .

5.10. Creating a Ul for Secondary Modules

Our application will have only one secondary module, called OlnvoicesO. Unlike our primary
modules, the secondary module is likely to contain numerous records and new records are added
more frequently.

An invoice consists of a header where some general attributes are described (number, date,
customer E) and invoice detail lines with the list of products sold, their quantities, prices, etc. To
save space on the page, we will hide the detail grid and display it only in response to a click on the
icon with the '+' sign on it. Thus, our detail grid will be embedded in the main one.

5.10.1. Controllers for Invoices

The controller of the invoice module must be able to return data for both invoice headers and the
associated invoice lines. The same applies to the methods for adding, editing and deleting records.

[Authorize(Roles = "manager")]
public class InvoiceController : Controller

{
E private DbModel db = new DbModel();

138

Chapter 5. Creating Web Applications in Entity Framework with MVC

E // display view

E public ActionResult Index()
E{

E return View();

E}

E // Receiving data in the JSON format for the main grid
E public ActionResult GetData(int? rows, int? page, string sidx, string sord,
string searchField, string searchString, string searchOper)
E{
/I get the page number, the number of data displayed
int pageNo = page ?? 1,
int limit = rows ?? 20;
/I calculate offset
int offset = (pageNo - 1) * limit;
// building a request for receipt of invoices
var invoicesQuery =
from invoice in db.INVOICES
where (invoice.INVOICE_DATE >= AppVariables.StartDate) &&
(invoice.INVOICE_DATE <= AppVariables.FinishDate)
select new
{
INVOICE_ID = invoice.INVOICE_ID,
CUSTOMER_ID = invoice. CUSTOMER_ID,
CUSTOMER_NAME = invoice. CUSTOMER.NAME,
INVOICE_DATE = invoice.INVOICE_DATE,
TOTAL_SALE = invoice. TOTAL_SALE,
PAID = invoice.PAID
I
/[adding a search condition to the query, if it is produced
/I for different fields, different comparison operators
/[are available when searching
if (searchField == "CUSTOMER_NAME")

Me MM M M M [T Mo [T [T [T [T M T TP T TP TP T T T T T T T T T T T T [T [T [T T [T T [T [T TP TP [T

{
switch (searchOper)
{
case "eq": // equal
invoicesQuery = invoicesQuery.Where(
¢ => ¢c.CUSTOMER_NAME == searchString);
break;
case "bw": // starting with
invoicesQuery = invoicesQuery.Where(
¢ => c.CUSTOMER_NAME.StartsWith(searchString));
break;
case "cn": // containing
invoicesQuery = invoicesQuery.Where(
¢ => c.CUSTOMER_NAME.Contains(searchString));
break;
}
}

139

MPMMP P MMM MO TP M M TP T T TP T T T T T T T T T T T T [T T [T T T [T T T [T TP [T TP TP TP [T> [Tp TP T T T T T T T TP

Chapter 5. Creating Web Applications in Entity Framework with MVC

if (searchField == "INVOICE_DATE")
{
var dateValue = DateTime.Parse(searchString);
switch (searchOper)
{
case "eq": /I =
invoicesQuery = invoicesQuery.Where(
¢ => c.INVOICE_DATE == dateValue);
break;
case "It": /I <
invoicesQuery = invoicesQuery.Where(
¢ => c.INVOICE_DATE < dateValue);
break;
case "le": Il <=
invoicesQuery = invoicesQuery.Where(
¢ => c.INVOICE_DATE <= dateValue);
break;
case "gt": // >
invoicesQuery = invoicesQuery.Where(
¢ => c.INVOICE_DATE > dateValue);
break;
case "ge": /[>=
invoicesQuery = invoicesQuery.Where(
¢ => c.INVOICE_DATE >= dateValue);

break;

}
}
if (searchField == "PAID")
{

int iVal = (searchString =="on") ? 1: 0;

invoicesQuery = invoicesQuery.Where(c => c.PAID == ival);
}

/I get the total number of invoices

int totalRows = invoicesQuery.Count();
/[add sorting

switch (sord)

{
case "asc'":
invoicesQuery = invoicesQuery.OrderBy(
invoice => invoice.INVOICE_DATE);
break;
case "desc":
invoicesQuery = invoicesQuery.OrderByDescending(
invoice => invoice.INVOICE_DATE);
break;
}

Il get invoice list

var invoices = invoicesQuery
.Skip(offset)
.Take(limit)
.ToList();

140

Chapter 5. Creating Web Applications in Entity Framework with MVC

/I calculate the total number of pages
int totalPages = totalRows / limit + 1;
I create the result for jqGrid
var result = new
{
page = pageNo,
total = totalPages,
records = totalRows,
rows = invoices
h
/I convert the result to JSON
return Json(result, JsonRequestBehavior.AllowGet);

}

[T [[T e e e e e me me my [my [mp

E // Receiving data in the form of JSON for the detail grid
E public ActionResult GetDetailData(int? invoice_id)
E{
E // build a LINQ query for receiving invoice items
/[filtered by invoice id
var lines =
from line in db.INVOICE_LINES
where line.INVOICE_ID == invoice_id
select new
{
INVOICE_LINE_ID = line.INVOICE_LINE_ID,
INVOICE_ID = line.INVOICE_ID,
PRODUCT _ID = line.PRODUCT _ID,
Product = line. PRODUCT.NAME,
Quantity = line.QUANTITY,
Price = line.SALE_PRICE,
Total = line. QUANTITY * line.SALE_PRICE
)i
/I get invoice position list
var invoices = lines
.TolList();
I create the result for jqGrid
var result = new
{
rows = invoices
h
/I convert the result to JSON
return Json(result, JsonRequestBehavior.AllowGet);

}

m

> M [T [T M Mo M T T T T T T T T T T T o o oy oy oy mp

E // Add new invoice

E [HttpPost]

E [ValidateAntiForgeryToken]

E public ActionResult Create(

E [Bind(Include = "CUSTOMER_ID,INVOICE_DATE")] INVOICE invoice)
E{

E // check the correctness of the model

141

Chapter 5. Creating Web Applications in Entity Framework with MVC

if (ModelState.IsValid)

{
try
{
var INVOICE_ID = new FbParameter("INVOICE_ID", FbDbType.Integer);
var CUSTOMER_ID = new FbParameter("CUSTOMER_ID", FbDbType.Integer);
var INVOICE_DATE = new FbParameter("INVOICE_DATE",
FbDbType.TimeStamp);
Il initialize parameters query
INVOICE_ID.Value = db.NextValueFor("GEN_INVOICE_ID");
CUSTOMER_ID.Value = invoice. CUSTOMER _ID;
INVOICE_DATE.Value = invoice.INVOICE_DATE;
Il execute stored procedure
db.Database.ExecuteSglCommand(
"EXECUTE PROCEDURE SP_ADD_INVOICE(@INVOICE_ID, @CUSTOMER_ID,
INVOICE_DATE)",
INVOICE_ID,
CUSTOMER_ID,
INVOICE_DATE);
I return success in JSON format
return Json(true);

}

catch (Exception ex)
{
/l return error in JSON format
return Json(new { error = ex.Message });

}
}

else {
string messages = string.Join("; ", ModelState.Values
.SelectMany(x => x.Errors)
.Select(x => x.ErrorMessage));
// return error in JISON format
return Json(new { error = messages });

}
}

[T > [T [T [T [T [T [T [T T T M T T T T T T mp |T|)@ [T T [T [T T [T [T [Tp T T T T T T mp

E // Edit invoice

E [HttpPost]

E [ValidateAntiForgeryToken]

E public ActionResult Edit(

E [Bind(Include = "INVOICE_ID,CUSTOMER_ID,INVOICE_DATE")] INVOICE invoice)
E{

Il check the correctness of the model

if (ModelState.IsValid)

{
try

{
var INVOICE_ID = new FbParameter("INVOICE_ID", FbDbType.Integer);

var CUSTOMER_ID = new FbParameter("CUSTOMER_ID", FbDbType.Integer);
var INVOICE_DATE = new FbParameter("INVOICE_DATE",

[T [T [T [T e e [Ty [mp

142

Chapter 5. Creating Web Applications in Entity Framework with MVC

FbDbType.TimeStamp);

/[initialize parameters query
INVOICE_ID.Value = invoice.INVOICE_ID;
CUSTOMER_ID.Value = invoice. CUSTOMER _ID;
INVOICE_DATE.Value = invoice.INVOICE_DATE;
Il execute stored procedure
db.Database.ExecuteSglCommand(

"EXECUTE PROCEDURE SP_EDIT_INVOICE(@INVOICE_ID, @CUSTOMER_ID,

INVOICE_DATE)",

INVOICE_ID,

CUSTOMER_ID,

INVOICE_DATE);
I return success in JSON format
return Json(true);

}

catch (Exception ex)
{
/l return error in JSON format
return Json(new { error = ex.Message });

}
}

else {
string messages = string.Join("; ", ModelState.Values
.SelectMany(x => x.Errors)
.Select(x => x.ErrorMessage));
[l return error in JSON format
return Json(new { error = messages });

}
}

[T T [T [T [T [T [T 1> 1> [Tp T T T T T T T T TP |T|>@ [T [T [Ty [T e [y [mp [m»

E // Delete invoice

E [HttpPost]

E [ValidateAntiForgeryToken]

E public ActionResult Delete(int id)
E {

try

{
var INVOICE_ID = new FbParameter("INVOICE_ID", FbDbType.Integer);

[/ initialize parameters query

INVOICE_ID.Value =id;

/I execute stored procedure

db.Database.ExecuteSglCommand(
"EXECUTE PROCEDURE SP_DELETE_INVOICE(@INVOICE_ID)",
INVOICE_ID);

/l return success in JSON format

return Json(true);

}

catch (Exception ex)

{

/I return error in JSON format
return Json(new { error = ex.Message });

T T e e e e e [Ty [Ty My e Ty mp mp mp mp

143

Chapter 5. Creating Web Applications in Entity Framework with MVC

}
}

m [m»

E // Payment of invoice
E [HttpPost]
E [ValidateAntiForgeryToken]
E public ActionResult Pay(int id)
E{
= try
{
var INVOICE_ID = new FbParameter("INVOICE_ID", FbDbType.Integer);
/I initialize parameters query
INVOICE_ID.Value =id;
/I execute stored procedure
db.Database.ExecuteSglCommand(
"EXECUTE PROCEDURE SP_PAY_FOR_INOVICE(@INVOICE_ID)",
INVOICE_ID);
/I return success in JSON format
return Json(true);

}

catch (Exception ex)
{
I/ return error in JISON format
return Json(new { error = ex.Message });
}
}

[T > [T [T [T [T [T [T [T [T T [T T T e me me m

E // Add invoice position

E [HitpPost]

E [ValidateAntiForgeryToken]

E public ActionResult CreateDetail(

E [Bind(Include = "INVOICE_ID,PRODUCT_ID,QUANTITY")] INVOICE_LINE invoiceLine)

E{

E // check the correctness of the model

E if (ModelState.lsValid)

E {

E try

E {

E var INVOICE_ID = new FbParameter("INVOICE_ID", FbDbType.Integer);

E var PRODUCT _ID = new FbParameter("PRODUCT _ID", FbDbType.Integer);
E var QUANTITY = new FbParameter("QUANTITY", FbDbType.Integer);

E Il initialize parameters query

E INVOICE_ID.Value = invoiceLine.INVOICE_ID;

E PRODUCT_ID.Value = invoiceLine.PRODUCT_ID;

E QUANTITY.Value = invoiceLine.QUANTITY;

E Il execute stored procedure

E db.Database.ExecuteSglCommand(

E ""EXECUTE PROCEDURE SP_ADD_INVOICE_LINE(@INVOICE_ID, @PRODUCT_ID,
@QUANTITY)",

E INVOICE_ID,

E PRODUCT _ID,

144

Chapter 5. Creating Web Applications in Entity Framework with MVC

QUANTITY);
/I return success in JISON format
return Json(true);

}

catch (Exception ex)
{
/I return error in JSON format
return Json(new { error = ex.Message });

}
}

else {
string messages = string.Join("; ", ModelState.Values
.SelectMany(x => x.Errors)
.Select(x => x.ErrorMessage));
I/ return error in JISON format
return Json(new { error = messages });

}
}

> e e M e e e e e e e e e oy mopymemymp

E // Edit invoice position

E [HttpPost]

E [ValidateAntiForgeryToken]

E public ActionResult EditDetail(

E [Bind(Include = "INVOICE_LINE_ID,INVOICE_ID,PRODUCT _ID,QUANTITY")]
INVOICE_LINE invoiceLine)

{
Il check the correctness of the model
if (ModelState.IsValid)

{
try
{

/I Create parameters
var INVOICE_LINE_ID = new FbParameter("INVOICE_LINE_ID",
FbDbType.Integer);
var QUANTITY = new FbParameter("QUANTITY", FbDbType.Integer);
/I initialize parameters query
INVOICE_LINE_ID.Value = invoiceLine.INVOICE_LINE_ID;
QUANTITY.Value = invoiceLine.QUANTITY;
Il execute stored procedure
db.Database.ExecuteSglCommand(
"EXECUTE PROCEDURE SP_EDIT_INVOICE_LINE(@INVOICE_LINE_ID, @QUANTITY)",
INVOICE_LINE_ID,
QUANTITY);
I return success in JSON format
return Json(true);

}

catch (Exception ex)

{

I/ return error in JSON format
return Json(new { error = ex.Message });

}

T M Mo [T T [T Mo [T T T T T T T TP T T T T T T T T T [T [T [T

145

Chapter 5. Creating Web Applications in Entity Framework with MVC

}

else {
string messages = string.Join("; ", ModelState.Values
.SelectMany(x => x.Errors)
.Select(x => x.ErrorMessage));
I/ return error in JISON format
return Json(new { error = messages });

}
}

T [T e My > e ey e mp

E // Delete invoice position
E [HttpPost]
E [ValidateAntiForgeryToken]
E public ActionResult DeleteDetail(int id)
E{
= try
{
Il create parameters
var INVOICE_LINE_ID = new FbParameter("INVOICE_LINE_ID",
FbDbType.Integer);
[/ initialize parameters query
INVOICE_LINE_ID.Value = id;
/I execute stored procedure
db.Database.ExecuteSglCommand(
"EXECUTE PROCEDURE SP_DELETE_INVOICE_LINE(@INVOICE_LINE_ID)",
INVOICE_LINE_ID);
I return success in JSON format
return Json(true);

}

catch (Exception ex)
{
[l return error in JSON format
return Json(new { error = ex.Message });

}
}

[T e e e e e e e T T T T T T T T T e me m

protected override void Dispose(bool disposing)
{

if (disposing)
{
db.Dispose();
}
base.Dispose(disposing);

}

> [T> [T> [T> T» M M mp mp

The GetDetailData method for retrieving the list of lines in an invoice lacks the code for page-by-
page navigation. Realistically, a typical invoice does not have enough lines to justify using page-by-
page navigation for them. Omitting it simplifies and speeds up the code.

146

Chapter 5. Creating Web Applications in Entity Framework with MVC

In our project, all data modification operations are performed in stored procedures, but you could
do the same work using Entity Framework. DDL code for the stored procedures can be found in the
database creation script in an earlier chapter and also in the .zip archives of all the DDL scripts:

https://github.com/sim1984/example-db_2_ 5/archive/1.0.zip
or https://github.com/sim1984/example-db_3_0/archive/1.0.zip

5.10.2. Views for Invoices

As with the Customer controller, only one view, View/Invoice/Index.cshtml is needed. The others
can be deleted from this folder. The layout of the view is very simple, but the JavaScript code is
quite extensive. We will examine the js code piece-by-piece.

@{
E ViewBag.Title = "Index";

}

<h2>Invoices</h2>
<table id="jqg"></table>
<div id="jpager"></div>

<script type="text/javascript">

E Jx*

E * The code to work with jqGrid
E ¥

</script>

To begin with, we will take the code for working with the main grid. All we have to write into it is
the properties of the model (field types and sizes, search, sorting, visibility parameters, etc.).

/l invoice grid

var dbGrid = $("#jgg").jgGrid({

E url: '@Url.Action("GetData")', URL to retrieve data
E datatype: "json", // format data

E mtype: "GET", // type of http request
E // model description

E colModel: [

E{

label: 'Id',

name: 'INVOICE_ID',

key: true,

hidden: true

}
{

label: 'CUSTOMER_ID',

name: 'CUSTOMER_ID',

hidden: true,

editrules: { edithidden: true, required: true },
editable: true,

[T > e Ty 1y e mp mp e mpy mp

147

https://github.com/sim1984/example-db_2_5/archive/1.0.zip
https://github.com/sim1984/example-db_3_0/archive/1.0.zip

Chapter 5. Creating Web Applications in Entity Framework with MVC

T

edittype:'custom’, // own type
editoptions: {
custom_element: function (value, options) {
// add hidden input
return $("<input>")
.attr('type', 'hidden’)
.attr(‘rowid’, options.rowld)
.addClass("FormElement")
.addClass("form-control")
.val(value)

.get(0);

m

}
}
h
{
label: 'Date’,
name: 'INVOICE_DATE',
width: 60,
sortable: true,
editable: true,
search: true,
edittype: "text", // type of input
align: "right",
formatter: 'date’, // formatted as date
sorttype: 'date’, // sorted as date
formatoptions: { // date format
srcformat: 'd.m.Y H:i:s',
newformat: 'd.m.Y H:i:s'
h
editoptions: {
/l'initializing the form element for editing
datalnit: function (element) {
Il create datepicker
$(element).datepicker({
id: 'invoiceDate_datePicker',
dateFormat: 'dd.mm.yy’,
minDate: new Date(2000, 0, 1),
maxDate: new Date(2030, 0, 1)
D;
}
h
searchoptions: {
/l'initializing the form element for searching
datalnit: function (element) {
Il create datepicker
$(element).datepicker({
id: 'invoiceDate_datePicker,
dateFormat: 'dd.mm.yy’,
minDate: new Date(2000, 0, 1),
maxDate: new Date(2030, 0, 1)

h;

MPMMP P IMP P MO MO TP TP M T T T T T T T T T T T T T T T TP [T T TP [T TP T [T [T [T [Te [T> [T [T TP T T T T T T T T TP

148

Chapter 5. Creating Web Applications in Entity Framework with MVC

|3

searchoptions: { // searching types
sopt: ['eq’, 'It', 'le', 'gt’, 'ge']

h

}
}
{

label: 'Customer’,
name: 'CUSTOMER_NAME,
width: 250,
editable: true,
edittype: "text",
editoptions: {

size: 50,

maxlength: 60,

readonly: true
h
editrules: { required: true },
search: true,
searchoptions: {

sopt: ['eq’, 'bw', ‘cn]

}

-~ o

label: 'Amount’,

name: TOTAL_SALE',

width: 60,

sortable: false,

editable: false,

search: false,

align: "right",

formatter: ‘currency', // format as currency

sorttype: 'number’,

searchrules: {
"required": true,
"number": true,
"minValue": 0

}
}
{

label: 'Paid’,

name: 'PAID',

width: 30,

sortable: false,

editable: true,

search: true,

searchoptions: {
sopt: ['eq’]

1

edittype: "checkbox",

formatter: "checkbox",

MPMMP P MMM MO TP M M TP T T TP T T T T T T T T T T T T [T T [T T T [T T T [T TP [T TP TP TP [T> [Tp TP T T T T T T T TP

149

Chapter 5. Creating Web Applications in Entity Framework with MVC

stype: "checkbox",
align: "center",
editoptions: {
value: "1",
offval: "0"

}

™ m» e mpy mp mp

E}
El,
E rowNum: 500, // number of rows displayed
E loadonce: false,
E sortname: 'INVOICE_DATE!, // sort by default by NAME column
E sortorder: "desc",
E width: window.innerWidth - 80, // grid width
E height: 500, // grid height
E viewrecords: true, // display the number of records
E caption: "Invoices", // grid caption
E pager: '#jpager', // pagination element
E subGrid: true, // show subgrid
E // javascript function for displaying the parent grid
E subGridRowExpanded: showChildGrid,
subGridOptions: {
I/l upload data only once
reloadOnExpand: false,
/' load the subgrid rows only when you click on the icon "+"
selectOnExpand: true

}

T T I e m> me

D;

// display the navigation bar
dbGrid.jqGrid('navGrid', '‘#jpager’,
E {
search: true,
add: true,
edit: true,
del: true,
view: false,
refresh: true,
searchtext: "Search",
addtext: "Add",
edittext: "Edit",
deltext: "Delete",
viewtext: "View",
viewtitle: "Selected record",
refreshtext: "Refresh”
b
update("edit"),
update("add"),
update("del")

~— [TP [T TP [T [T [T [T [T [T [T [T> TP [T> TP [Tp TP [Th [T

~—

150

Chapter 5. Creating Web Applications in Entity Framework with MVC

WeOll add one more OcustomO button to the main grid, for paying the invoice.

// Add a button to pay the invoice
dbGrid.navButtonAdd(‘#jpager’,
{
E buttonicon: "glyphicon-usd",
E title: "Pay",
E caption: "Pay",
E position: "last",
onClickButton: function () {
Il get the current record ID
var id = dbGrid.getGridParam("selrow");
if (id) {
var url = '@Url.Action("Pay")’;
$.ajax({
url: url,
type: 'POST,
data: {id: id },
success: function (data) {
/I check if an error has occurred
if (data.hasOwnProperty(“"error")) {
alertDialog('Error', data.error);
}
else {
Il refresh grid
$("#jag")-jqGrid(
'setGridParam’,

M e e > e e e e e me e e me e e me oy e oy oy me oy me me oy me rmy

{
datatype: ‘json’
}
).trigger(‘reloadGrid’);
}
}
D
}
}

5.10.3. Dialog Boxes for Invoices

The dialog boxes for editing secondary sets of data are much more complicated than for the
primary sets. Since they often use options selected from other modules, it will not be possible to use
the standard jqGrid methods to build these edit dialog boxes. However, this library has an option to
build dialog boxes using templates, which we will use.

To enable customer selection, we will create a read-only field with a button at its right-hand side for
opening the form displaying the customer selection grid.

Il returns properties to create edit dialogs

151

Chapter 5. Creating Web Applications in Entity Framework with MVC

function update(act) {
E // editing dialog template
E var template = "<div style="margin-left:15px;' id="dIgEditinvoice'>";
E template += "<div>{CUSTOMER_ID} </div>";
E template += "<div> Date: </div><div>{INVOICE_DATE} </div>";
E // customer input field with a button
E template += "<div> Customer [*]:</div>";
E template += "<div>";
E template += "<div style='float: left;>{CUSTOMER_NAME}</div> ";
E template += "<a style="margin-left: 0.2em;" class="btn"";
E template += " onclick="showCustomerWindow(); return false;">":
E template += "";
E template += " Select ";
E template += "<div style='clear: both;'></div>";
E template += "</div>";
E template += "<div> {PAID} Paid </div>";
E template += "<hr style="width: 100%;'/>";
E template += "<div> {sData} {cData} </div>";
E template += "</div>";
return {
top: $(".container.body-content").position().top + 150,
left: $(".container.body-content").position().left + 150,
modal: true,
drag: true,
closeOnEscape: true,
closeAfterAdd: true,
closeAfterEdit: true,
reloadAfterSubmit: true,
template: (act != "del") ? template : null,
onclickSubmit: function (params, postdata) {
/I get row id
var selectedRow = dbGrid.getGridParam("selrow");
switch (act) {
case "add™
params.url = '@Url.Action("Create")’;
/I get customer id for current row
postdata. CUSTOMER_ID =
$(‘#dIgEditinvoice inputiname=CUSTOMER_ID]").val();
break;
case "edit":
params.url = '@Url.Action("Edit")’;
postdata.INVOICE_ID = selectedRow;
/I get customer id for current row
postdata. CUSTOMER_ID =
$(‘#dIgEditinvoice inputiname=CUSTOMER_ID]’).val();
break;
case "del™
params.url = '@Url.Action("Delete");
postdata.INVOICE_ID = selectedRow;
break;

M M M M Mo [T [T [T [T [T TP T T TP TP T TP T T T T T T T T T [T [T [T [T [T [T

152

Chapter 5. Creating Web Applications in Entity Framework with MVC

h
afterSubmit: function (response, postdata) {
var responseData = response.responseJSON;
/I check the result for error messages
if (responseData.hasOwnProperty(“error")) {
if (responseData.error.length) {
return [false, responseData.error];

}
}

else {
/I refresh grid
$(this).jqGrid(
'setGridParam’,

{

datatype: ‘'json’

}
)-.trigger(‘reloadGrid');

}

return [true, ™, 0];

S~ TP M M e My mp mp mp mp o e e e e e Ty e e e e me my

Now we will write a function for opening the customer module that invokes the Bootstrap library to
create a dialog box containing the grid from which a customer can be selected. It is actually the
same grid we used earlier but, this time, it is enclosed by a dialog box. A click on the OK button will
place the customer identifier and the customer name into the input fields of the parent dialog box
for editing invoices.

/**

E* Display a window for selecting a customer

E*/

function showCustomerWindow() {

E // the main block of the dialog

var dlg = $('<div>")
.attr('id’, 'dlgChooseCustomer’)
.attr(‘aria-hidden’, 'true")
.attr(‘'role’, 'dialog')
.attr('data-backdrop’, 'static’)
.css("z-index", '2000"
.addClass('modal’)
.appendTo($('body");

[T T [T [T e [y [mp [mp

// block with the contents of the dialog

var digContent = $("<div>")
.addClass("modal-content")
.css(‘width', '730px")
.appendTo($('<div>")
.addClass('modal-dialog’)

[T T [T [y [Ty [mp

153

Chapter 5. Creating Web Applications in Entity Framework with MVC

E .appendTo(dig)):

E // block with dialogue header
E var digHeader = $('<div>').addClass("modal-header").appendTo(dlgContent);

E // button "X" for closing

E $("<button>")

E .addClass("close")
.attr('type', 'button’)
.attr(‘aria-hidden’, 'true’)
.attr('data-dismiss', 'modal’)
.html("&asmp;times;")
.appendTo(digHeader);

[T T T [T T m

E // title
E $("<h5>").addClass("modal-title")
E html("Select customer")

E .appendTo(digHeader);

E // body of dialogue

E var digBody = $('<div>")

E .addClass("modal-body")
E .appendTo(digContent);

E // footer of the dialogue
E var digFooter = $('<div>').addClass("modal-footer").appendTo(digContent);

E // button "OK"
E $("<button>")

E .attr('type’, 'button’)

E .addClass('btn’)

E .htmI('OK)

E .on(click’, function () {

E var rowld = $("#jggCustomer").jqGrid("getGridParam", "selrow");
E varrow = $("#qgCustomer").jqGrid("getRowData", rowld);

E // To save the identifier and customer name

E //to the input elements of the parent form

E $(‘#dlgEditinvoice inputiname=CUSTOMER_ID]").val(rowld);

E $(#dlgEditinvoice inputfname=CUSTOMER_NAMEY]').val(row['"NAME"]);
E dlg.modal(‘hide");

E})

E .appendTo(digFooter);

E // button "Cancel"

E $("<button>")

E attr('type', 'button’)

.addClass('btn")

.html('Cancel’)

.on(‘click’, function () { dlg.modal(’hide"); })
.appendTo(digFooter);

[T T T [T M

154

Chapter 5. Creating Web Applications in Entity Framework with MVC

E // add a table to display the customers in the body of the dialog
E $('<table>")

E .attr(id', 'jggCustomer)

E .appendTo(digBody);

E // add the navigation bar

E $('<div>"

E .attr(id', 'jggCustomerPager’)
E .appendTo(digBody);

E dlg.on(’hidden.bs.modal', function () {
E dig.remove();

EY;

E // show dialog
E dig.modal();

E // create and initialize jgGrid
E var dbGrid = $("#jggCustomer").jqGrid({
url: ‘@Url.Action("GetData", "Customer")', // URL to retrieve data
mtype: "GET", // http type of request
datatype: "json", // data format
page: 1,
width: '100%',
I/ view description
colModel: [
{
label: 'Id’,
name: 'CUSTOMER_ID',
key: true,
hidden: true

12

label: 'Name',
name: 'NAME',
width: 250,
sortable: true,
editable: true,
edittype: "text", // input type
search: true,
searchoptions: {
sopt: ['eq’, 'bw', ‘cn'] // allowed search operators
}
/I size and maximum length for the input field
editoptions: { size: 30, maxlength: 60 },
Il required input
editrules: { required: true }

label: 'Address’,
name: 'ADDRESS',

155

Chapter 5. Creating Web Applications in Entity Framework with MVC

width: 300,

sortable: false,

editable: true,

search: false,

edittype: "textarea”,

editoptions: { maxlength: 250, cols: 30, rows: 4 }

13

label: 'Zip Code',

name: 'ZIPCODE/,

width: 60,

sortable: false,

editable: true,

search: false,

edittype: "text",

editoptions: { size: 30, maxlength: 10 },
h

label: 'Phone’,

name: 'PHONE',

width: 85,

sortable: false,

editable: true,

search: false,

edittype: "text",

editoptions: { size: 30, maxlength: 14 },
}

[

loadonce: false,

pager: '#jggCustomerPager’,

rowNum: 500, // number of rows displayed

sortname: 'NAME', // sort by default by NAME column
sortorder: "asc",

height: 500

D

M > e M e e e e e e e e e e e o e e e e e oy oy oy oy me me me me oy me oy my my rmy
~—

dbGrid.jqGrid('navGrid', ‘#jggCustomerPager,
{
search: true,
add: false,
edit: false,
del: false,
view: false,
refresh: true,
searchtext: "Search",
viewtext: "View",
viewtitle: "Selected record",
refreshtext: "Refresh”

S~ [T M My mp mp mp mpy mp oy me e oy oy

156

Chapter 5. Creating Web Applications in Entity Framework with MVC

All that is left to write for the invoice module is the showChildGrid function that enables the invoice
lines to be displayed and edited. Our function will create a grid with invoice lines dynamically after
a click on the '+' button to show the details.

Loading data for the lines requires passing the primary key from the selected invoice header.

// handler of the event of opening the parent grid

I takes two parameters: the identifier of the parent record
/l and the value of the primary key

function showChildGrid(parentRowID, parentRowKey) {
E var childGridID = parentRowID +"_table";

E var childGridPagerID = parentRowlD + "_pager";

E // send the primary key of the parent record

E // to filter the entries of the invoice items

E var childGridURL = '@Url.Action("GetDetailData")';

E childGridURL = childGridURL + "?invoice_id="

E + encodeURIComponent(parentRowKey)

E // add HTML elements to display the table and page navigation
E // as children for the selected row in the master grid
$('<table>")

.attr('id', childGridID)

.appendTo($('# + parentRowID));

™™ [T [T

$('<div>")
.attr('id', childGridPagerID)
.addClass('scroll")
.appendTo($('# + parentRowID));

m > [T [mp

/I create and initialize the child grid
var detailGrid = $("#" + childGridID).jgGrid({
url: childGridURL,
mtype: "GET",
datatype: "json",
page: 1,
colModel: [
{
label: 'Invoice Line ID',
name: 'INVOICE_LINE_ID',
key: true,
hidden: true
b
{

label: 'Invoice ID',

name: 'INVOICE_ID',

hidden: true,

editrules: { edithidden: true, required: true },
editable: true,

edittype: 'custom’,

editoptions: {

[T M [T [T [T [T T T T T T T T T T e T T T [Ty [mp

157

MPMMP P MMM MO TP M M TP T T TP T T T T T T T T T T T T [T T [T T T [T T T [T TP [T TP TP TP [T> [Tp TP T T T T T T T TP

Chapter 5. Creating Web Applications in Entity Framework with MVC

custom_element: function (value, options) {

/I create hidden input

return $("<input>")
.attr('type’, 'hidden")
.attr('rowid’, options.rowld)
.addClass("FormElement")
.addClass("form-control")
.val(parentRowKey)

.get(0);

label: 'Product 1D,
name: 'PRODUCT _ID',
hidden: true,
editrules: { edithidden: true, required: true },
editable: true,
edittype: 'custom’,
editoptions: {
custom_element: function (value, options) {
/Il create hidden input
return $("<input>")
.attr('type’, 'hidden")
.attr('rowid', options.rowld)
.addClass("FormElement")
.addClass("form-control")
.val(value)

.get(0);

}
h

label: 'Product’,
name: 'Product’,
width: 300,
editable: true,
edittype: "text",
editoptions: {
size: 50,
maxlength: 60,
readonly: true
Ji
editrules: { required: true }
1o
{

label: 'Price’,

name: 'Price’,
formatter: 'currency’,
editable: true,
editoptions: {

158

Chapter 5. Creating Web Applications in Entity Framework with MVC

readonly: true
i3
align: "right",
width: 100
It

{
label: 'Quantity’,

name: '‘Quantity’,
align: "right",
width: 100,
editable: true,
editrules: { required: true, number: true, minValue: 1 },
editoptions: {
dataEvents: [
{
type: 'change’,
fn: function (e) {
var quantity = $(this).val() - O;
var price =
$(‘#dIgEditinvoiceLine input[name=Price]').val() - 0;
$(‘#dIgEditinvoiceLine inputiname=Total]’).val(quantity * price);
}
}
1,
defaultValue: 1
}
h
{

label: 'Total',
name: 'Total,
formatter: 'currency’,
align: "right",
width: 100,
editable: true,
editoptions: {
readonly: true
}
}
1,
loadonce: false,
width: "100%,
height: '100%"',
pager: "#" + childGridPagerID
Wk

MMM M M MO [T MO [T [T M [T [T T TP T T TP T T T T TP T T T T T T T [T [T [T T [T [T [T [T [T [T [T [T [T TP [T

E // displaying the toolbar
E $("#" + childGridID).jgGrid('navGrid', '# + childGridPagerlD,
{

search: false,

add: true,

edit: true,

T [T [T [T

159

™ M e M e m e

Chapter 5. Creating Web Applications in Entity Framework with MVC

del: true,

refresh: true
h
updateDetail("edit"),
updateDetail("add"),
updateDetail("del")

E // function that returns settings for the editing dialog
E function updateDetail(act) {

MP MM M M MO [T M [T [T T TP T T TP T T TP T T T T T T T T T T T T T [T [T T [T [T T [T [T TP TP [T

I editing dialog template
var template = "<div style="margin-left:15px;" id="dlgEditInvoiceLine'>";
template += "<div>{INVOICE_ID} </div>";
template += "<div>{PRODUCT_ID} </div>";
/l input field for goods with a button
template += "<div> Product [*]:</div>";
template += "<div>";
template += "<div style="float: left;'>{Product}</div>";
template += "<a style='margin-left: 0.2em;’ class='btn" ",
template += "onclick="showProductWindow(); return false;>";
template += "";
template +=" ??????? ",
template += "<div style='clear: both;'></div>";
template += "</div>";
template += "<div> Quantity: </div><div>{Quantity} </div>";
template += "<div> Price: </div><div>{Price} </div>";
template += "<div> Total: </div><div>{Total} </div>";
template += "<hr style='width: 100%;'/>";
template += "<div> {sData} {cData} </div>";
template += "</div>";
return {
top: $(".container.body-content").position().top + 150,
left: $(".container.body-content”).position().left + 150,
modal: true,
drag: true,
closeOnEscape: true,
closeAfterAdd: true,
closeAfterEdit: true,
reloadAfterSubmit: true,
template: (act != "del") ? template : null,
onclickSubmit: function (params, postdata) {
var selectedRow = detailGrid.getGridParam("selrow");
switch (act) {
case "add":
params.url = '@Url.Action("CreateDetail")';
/I get invoice id
postdata.INVOICE_ID =
$(‘#dIgEditinvoiceLine inputfname=INVOICE_ID]).val();
/I get the product ID for the current record
postdata.PRODUCT _ID =
$(‘#dIgEditinvoiceLine inputifname=PRODUCT _ID]").val();

160

Chapter 5. Creating Web Applications in Entity Framework with MVC

break;

case "edit"
params.url = '@Url.Action("EditDetail")";
Il get current record id
postdata.INVOICE_LINE_ID = selectedRow;
break;

case "del™:
params.url = '@Url.Action("DeleteDetail")';
Il get current record id
postdata.INVOICE_LINE_ID = selectedRow;
break;

}
%
afterSubmit: function (response, postdata) {
var responseData = response.responseJSON;
Il check the result for error messages
if (responseData.hasOwnProperty(“error")) {
if (responseData.error.length) {
return [false, responseData.error];

}
}

else {
/I refresh grid
$(this).jqGrid(
'setGridParam’,

{

datatype: ‘'json’

}
)-.trigger(‘reloadGrid');

}

return [true, ", 0];

>~ TP MMM MMM MM M M TP TP TP TP TP M MO MO M M M M M M M M M T T T T T [T

Now we are done with creating the invoice module. Although the showProductWindow function that is
used to select a product from the list while filling out invoice lines is not examined here, it is totally

similar to the showCustomerWindofwnction that we examined earlier to implement the selection of
customers from the customer module.

An observant reader might have noticed that the functions for displaying the selection from the
module and for displaying the module itself were almost identical. Something you could do yourself
to improve the code is to move these functions into separate .js script files.

5.11. Authentication

The ASP.NET technology has a powerful mechanism for managing authentication in .NET
applications called ASP.NET Identity. The infrastructure of OWIN and AspNet Identity make it

161

Chapter 5. Creating Web Applications in Entity Framework with MVC

possible to perform both standard authentication and authentication via external services through
accounts in Google, Twitter, Facebook, et al.

The description of the ASP.NET lIdentity technology is quite comprehensive and goes beyond the
scope of this publication but you can read about it at https://www.asp.net/identity

For our application, we will take a less complicated approach based on form authentication.
Enabling form authentication entails some changes in the web.config configuration file. Find the
<system.web>section and insert the following subsection inside it:

<authentication mode="Forms">

E <forms name="cookies" timeout="2880" loginUrl="~/Account/Login"
E defaultUrl="~/Invoice/Index"/>

</authentication>

Setting mode="Formse&nables form authentication. Some parameters need to follow it. The following
list of parameters is available:

cookieless

specifies whether cookie sets are used and how they are used. It can take the following values:

UseCookies

specifies that the cookie sets will always be used, regardless of the device

UseUri

cookies sets are never used

AutoDetect

if the device supports cookie sets, they are used, otherwise, they are not used; a test
determining their support is run for this setting.

UseDeviceProfile

if the device supports cookie sets, they are used, otherwise, they are not used; no detection
test is run. Used by default.

defaultUrl

specifies the URL to redirect to after authentication

domain

specifies cookie sets for the entire domain, allowing for the same cookie sets to be used for the
main domain and its sub-domains. By default, its value is an empty string.

loginUrl

the URL for user authentication. The default value is "~[Account/Login" .
name

specifies the name for the cookie set. The default value is " ASPXAUTH"

162

https://www.asp.net/identity

Chapter 5. Creating Web Applications in Entity Framework with MVC

path

specifies the path for the cookie set. The default value is A

requireSSL

specifies whether an SSL connection is required for sending cookie sets. The default value is
false

timeout

specifies the timeout for cookies in minutes.

In our application, we will store authentication data in the same database that stores all other data
to avoid the need for an additional connection string.

5.11.1. Infrastructure for Authentication

Now we need to create all the infrastructure required for authentication"N"models, controllers and
views. The WebUsemodel describes the user:

[Table("Firebird. WEBUSER")]

public partial class WEBUSER

{

E [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage",
E "CA2214:DoNotCallOverridableMethodsInConstructors")]

E public WEBUSER()

E{

E WEBUSERINROLES = new HashSet<WEBUSERINROLE>();

E}

E [Key]
E [DatabaseGenerated(DatabaseGeneratedOption.None)]
E public int WEBUSER_ID { get; set; }

E [Required]
E [StringLength(63)]
E public string EMAIL { get; set; }

E [Required]
E [StringLength(63)]
E public string PASSWD { get; set; }

E [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage",
E "CA2227:CollectionPropertiesShouldBeReadOnly")]
E public virtual ICollection<WEBUSERINROLE> WEBUSERINROLES { get; set; }

}

WeOll add two more models: one for the description of roles (WEBROLE) and another one for
binding the roles to users (WEBUSERINROLE).

163

Chapter 5. Creating Web Applications in Entity Framework with MVC

[Table("Firebird. WEBROLE")]

public partial class WEBROLE

{

E [Key]

E [DatabaseGenerated(DatabaseGeneratedOption.None)]
E public int WEBROLE_ID { get; set; }

E [Required]

E [StringLength(63)]

E public string NAME { get; set; }
}

[Table("Firebird WEBUSERINROLE")]

public partial class WEBUSERINROLE

{,\

E [Key]

E [DatabaseGenerated(DatabaseGeneratedOption.None)]
E public int ID { get; set; }

E [Required]
E public int WEBUSER_ID { get; set; }

E [Required]
E public int WEBROLE_ID { get; set; }

E public virtual WEBUSER WEBUSER { get; set; }

E public virtual WEBROLE WEBROLE { get; set: }
}

We will use the Fluent API to specify relations between WEBUSERd WEBUSERINR®Lthe DbModel
class.

E
E public virtual DbSet<WEBUSER> WEBUSERS { get; set; }
E public virtual DbSet<WEBROLE> WEBROLES { get; set; }
E public virtual DbSet<WEBUSERINROLE> WEBUSERINROLES { get; set; }
E
E protected override void OnModelCreating(DbModelBuilder modelBuilder)
E{
modelBuilder.Entity<WEBUSER>()
.HasMany(e => e. WEBUSERINROLES)
.WithRequired(e => e WEBUSER)
.WillCascadeOnDelete(false);
E

}

[T [T T e T T T

164

Chapter 5. Creating Web Applications in Entity Framework with MVC

Since we use the Database First technology, tables in the database can be created automatically. |
prefer to control the process so here is a script for creating the additional tables:

RECREATE TABLE WEBUSER (

E WEBUSER_ID INT NOT NULL,

E EMAIL VARCHAR(63) NOT NULL,

E PASSWD VARCHAR(63) NOT NULL,

E CONSTRAINT PK_WEBUSER PRIMARY KEY(WEBUSER_ID),
E CONSTRAINT UNQ_WEBUSER UNIQUE(EMAIL)

);

RECREATE TABLE WEBROLE (

E WEBROLE_ID INT NOT NULL,

E NAME VARCHAR(63) NOT NULL,

E CONSTRAINT PK_WEBROLE PRIMARY KEY(WEBROLE_ID),
E CONSTRAINT UNQ_WEBROLE UNIQUE(NAME)

);

RECREATE TABLE WEBUSERINROLE (

E ID INT NOT NULL,

E WEBUSER_ID INT NOT NULL,

E WEBROLE_ID INT NOT NULL,

E CONSTRAINT PK_WEBUSERINROLE PRIMARY KEY(ID)

);

ALTER TABLE WEBUSERINROLE
ADD CONSTRAINT FK_WEBUSERINROLE_USER
FOREIGN KEY (WEBUSER_ID) REFERENCES WEBUSER (WEBUSER_ID);

ALTER TABLE WEBUSERINROLE
ADD CONSTRAINT FK_WEBUSERINROLE_ROLE
FOREIGN KEY (WEBROLE_ID) REFERENCES WEBROLE (WEBROLE_ID);

RECREATE SEQUENCE SEQ_WEBUSER,;
RECREATE SEQUENCE SEQ_WEBROLE;
RECREATE SEQUENCE SEQ_WEBUSERINROLE;

SET TERM %,

RECREATE TRIGGER TBI_WEBUSER
FOR WEBUSER

ACTIVE BEFORE INSERT

AS

BEGIN

E IF (NEW.WEBUSER_ID IS NULL) THEN

E NEW.WEBUSER_ID = NEXT VALUE FOR SEQ WEBUSER;
ENDA

RECREATE TRIGGER TBI_WEBROLE
FOR WEBROLE

165

Chapter 5. Creating Web Applications in Entity Framework with MVC

ACTIVE BEFORE INSERT

AS

BEGIN

E IF (NEW.WEBROLE_ID IS NULL) THEN

E NEW.WEBROLE_ID = NEXT VALUE FOR SEQ_WEBROLE;
ENDA

RECREATE TRIGGER TBI_WEBUSERINROLE

FOR WEBUSERINROLE

ACTIVE BEFORE INSERT

AS

BEGIN

E IF (NEW.ID IS NULL) THEN

E NEW.ID = NEXT VALUE FOR SEQ_WEBUSERINROLE;
END?

SET TERM ;»

To test it, weOll add two users and two roles:

INSERT INTO WEBUSER (EMAIL, PASSWD) VALUES ('john’, '12345');
INSERT INTO WEBUSER (EMAIL, PASSWD) VALUES (‘alex’, '123");
COMMIT;

INSERT INTO WEBROLE (NAME) VALUES (‘admin’);
INSERT INTO WEBROLE (NAME) VALUES (‘manager’);
COMMIT;

-- Link users and roles

INSERT INTO WEBUSERINROLE(WEBUSER _ID, WEBROLE_ID) VALUES(1, 1);
INSERT INTO WEBUSERINROLE(WEBUSER_ID, WEBROLE_ID) VALUES(1, 2);
INSERT INTO WEBUSERINROLE(WEBUSER _ID, WEBROLE_ID) VALUES(2, 2);
COMMIT;

Comment about passwords

Usually, some hash from the password, rather than the actual password, is stored
in an open form, using the PBKDF2 algorithm, for example. For our example, we
have simplified authentication somewhat.

Our code will not interact directly with the WebUser model during registration and authentication.
Instead, we will add some special models to the project:

166

Chapter 5. Creating Web Applications in Entity Framework with MVC

namespace FBMVCExample.Models

{

E using System:;

E using System.Collections.Generic;

E using System.ComponentModel.DataAnnotations;

E using System.ComponentModel.DataAnnotations.Schema;
E using System.Data.Entity.Spatial;

E // Login model
E public class LoginModel
E{

[Required]
public string Name { get; set; }

m m

[Required]
[DataType(DataType.Password)]
public string Password { get; set; }

}

T [T [T [T

E // Model for registering a new user
E public class RegisterModel

E{

E [Required]

public string Name { get; set; }

m m

[Required]
[DataType(DataType.Password)]
public string Password { get; set; }

T [T TP

[Required]

[DataType(DataType.Password)]

[Compare("Password", ErrorMessage =" Passwords do not match ")]
public string ConfirmPassword { get; set; }

=~ [T> [T> > > m»

These models will be used for the authentication and registration views, respectively. The
authentication view is coded as follows:

@model FBMVCExample.Models.LoginModel

@{
E ViewBag.Title = "Login";
}

<h2>Login</h2>

@using (Html.BeginForm())
{

167

Chapter 5. Creating Web Applications in Entity Framework with MVC

E @Html.AntiForgeryToken()
<div class="form-horizontal">

m

@Html.ValidationSummary(true)
<div class="form-group">

m [T

@Html.LabelFor(model => model.Name,
new { @class = "control-label col-md-2"})
<div class="col-md-10">
@Html.EditorFor(model => model.Name)
@Html.ValidationMessageFor(model => model.Name)
</div>
</div>

[T T [T [T [y [mp [mp

<div class="form-group">
@Html.LabelFor(model => model.Password,
new { @class = "control-label col-md-2"})
<div class="col-md-10">
@Html.EditorFor(model => model.Password)
@Html.ValidationMessageFor(model => model.Password)
</div>
</div>

[T [T [T [T e [Ty [y [mp

<div class="form-group">
<div class="col-md-offset-2 col-md-10">
<input type="submit" value="Logon" class="btn btn-default" />
</div>
</div>
E </div>

™ > e mp mp

——

@section Scripts {
E @Scripts.Render("~/bundles/jqueryval")

}

The registration view, in turn, is coded as follows:
@model FBMVCExample.Models.RegisterModel

@{

E ViewBag.Title = "Registration";
}

<h2>?7?27?2????2???7</h2>

@using (Html.BeginForm())

{
E @Html.AntiForgeryToken()

<div class="form-horizontal">

m

@Html.ValidationSummary(true)
<div class="form-group">

T [T

168

Chapter 5. Creating Web Applications in Entity Framework with MVC

@Html.LabelFor(model => model.Name,
new { @class = "control-label col-md-2" })

m [m»

<div class="col-md-10">
@Html.EditorFor(model => model.Name)
@Html.ValidationMessageFor(model => model.Name)
</div>
</div>

T T [Ty [Ty [mp

<div class="form-group">
@Html.LabelFor(model => model.Password,
new { @class = "control-label col-md-2"})

m [Ty [T

E <div class="col-md-10">

E @Html.EditorFor(model => model.Password)

E @Html.ValidationMessageFor(model => model.Password)
E </div>

E </div>

E <div class="form-group">

E @Html.LabelFor(model => model.ConfirmPassword,

E new { @class = "control-label col-md-2"})

E <div class="col-md-10">

E @Html.EditorFor(model => model.ConfirmPassword)

E @Html.ValidationMessageFor(model => model.ConfirmPassword)
E </div>

E </div>

E <div class="form-group">

<div class="col-md-offset-2 col-md-10">
<input type="submit" value="Register"

class="btn btn-default" />

</div>

E </div>

E </div>

}

T [T [T [T

@section Scripts {
E @Scripts.Render("~/bundles/jqueryval")

}

Comment about users

The model, views and controllers for user authentication and registration are
made as simple as possible in this example. A user usually has a lot more
attributes than just a username and a password.

Now let us add one more controller"N"AccountController"N"with the following contents:

169

Chapter 5. Creating Web Applications in Entity Framework with MVC

using System;

using System.Collections.Generic;
using System.Linq;

using System.Web;

using System.Web.Mvc;

using System.Web.Security;

using FBMVCExample.Models;

namespace FBMVCExample.Controllers

{

E public class AccountController : Controller
E{

public ActionResult Login()

{

return View();

}

m > [y rm»

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Login(LoginModel model)

{
if (ModelState.IsValid)

{

/l search user in db
WEBUSER user = null;
using (DbModel db = new DbModel())
{

user = db.WEBUSERS.FirstOrDefault(

u => u.EMAIL == model.Name &&
u.PASSWD == model.Password);

}
/I if you find a user with a login and password,
/l then remember it and do a redirect to the start page
if (user != null)
{

FormsAuthentication.SetAuthCookie(model.Name, true);

return RedirectToAction("Index", "Invoice");

}

else
{
ModelState.AddModelError(",
" A user with such a username and password does not exist ");
}
}

return View(model);

}

M M M M Mo Mo Mo M T M T T T T T T T T T T T T T T T T [T [T [T

[Authorize(Roles = "admin")]
public ActionResult Register()

{

return View();

T [T [T [T

170

T

MPMMP P IMP P MO MO TP TP M T T T T T T T T T T T T T T T TP [T T TP [T TP T [T [T [T [Te [T> [T [T TP T T T T T T T T TP

Chapter 5. Creating Web Applications in Entity Framework with MVC
}

[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult Register(RegisterModel model)

{
if (ModelState.lsValid)

{
WEBUSER user = null;
using (DbModel db = new DbModel())

{
user = db.WEBUSERS.FirstOrDefault(u => u.EMAIL == model.Name);
}
if (user == null)
{

/I create a new user
using (DbModel db = new DbModel())
{
/I get a new identifier using a sequence
int userld = db.NextValueFor("SEQ_WEBUSER");
db.WEBUSERS.Add(new WEBUSER {
WEBUSER_ID = userld,
EMAIL = model.Name,
PASSWD = model.Password
D;
db.SaveChanges();
user = db.WEBUSERS.Where(u => u.WEBUSER_ID == userld)
.FirstOrDefault();
/l find the role of manager
/I This role will be the default role, i.e.
/I will be issued automatically upon registration
var defaultRole =
db.WEBROLES
.Where(r => r.NAME == "manager")
.FirstOrDefault();
/I Assign the default role to the newly added user
if (user != null && defaultRole != null)

{
db.WEBUSERINROLES.Add(new WEBUSERINROLE

{
WEBUSER_ID = user WEBUSER_ID,
WEBROLE_ID = defaultRole. WEBROLE_ID
D
db.SaveChanges();
}
}

/I if the user is successfully added to the database

if (user != null)

{
FormsAuthentication.SetAuthCookie(model.Name, true);
return RedirectToAction("Login", "Account");

171

Chapter 5. Creating Web Applications in Entity Framework with MVC

}
}
else
{
ModelState.AddModelError(",
"User with such login already exists");

}
}

return View(model);

}

[T [T e e e [me my [y my my

public ActionResult Logoff()
{
FormsAuthentication.SignOut();
return RedirectToAction("Login", "Account");
}
}

=~ [T> [T> [T> T» M mp

Note the attribute [Authorize(Roles = "admin")] to stipulate that only a user with the admin role
can perform the user registration operation. This mechanism is called an authentication filter . We
will get back to it a bit later .

Adding a New User

We add a new user to the database during registration and check during authentication as to
whether that user exists. If the user is found, we use form authentication to set a cookie, as follows:

FormsAuthentication.SetAuthCookie(model.Name, true);

All information about a user in Asp.Net MVC is stored in the proprty HttpContext.User that
implements the IPrincipal interface defined in the System.Security.Principal namespace.

The IPrincipal interface defines the Identity property that stores the object of the Ildentity
interface describing the current user.

The lldentity interface has the following properties:

AuthenticationType

authentication type

IsAuthenticated

returns true if the user is logged in

Name

the username in the system

To determine whether a user is logged in, ASP.NET MVC receives cookies from the browser and if
the user is logged in, the property lldentity.IsAuthenticated is set to true and the Nameproperty

172

Chapter 5. Creating Web Applications in Entity Framework with MVC

gets the username as its value.

Next, we will add authentication items using the universal providers mechanism.

Universal Providers

Universal providers offer a ready-made authentication functionality. At the same time, these
providers are flexible enough that we can redefine them to work in whatever way we need them to.
It is not necessary to redefine and use all four providers. That is handy if we do not need all of the
fancy ASP.NET lIdentity features, but just a very simple authentication system.

So, our next step is to redefine the role provider. To do this, we need to add the
Microsoft.AspNet.Providers package using NuGet.

Defining the Role Provider

To define the role provider, first we add the Providers folder to the project and then add a new
MyRoleProvider class to it:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Security;

using FBMVCExample.Models;

namespace FBMVCExample.Providers
{
E public class MyRoleProvider : RoleProvider
E{
= /l/ <summary>
/Il Returns the list of user roles
/Il </summary>
/Il <param name="username">Username</param>
Il <returns></returns>
public override string[] GetRolesForUser(string username)
{
string[] roles = new string[] { };
using (DbModel db = new DbModel())
{
/I Get the user
WEBUSER user = db.WEBUSERS.FirstOrDefault(
u => u.EMAIL == username);
if (user != null)
{
/[fill in an array of available roles
inti=0;
roles = new string[user. WEBUSERINROLES.Count];
foreach (var rolesinUser in user WEBUSERINROLES)

{
roles]i] = rolesinUser WEBROLE.NAME;

[T > [T [T [T [T T e e me me me me me me me e e e e

173

™ m» e mpy mp mp

[T e [T e e e me e me e my my [mp

[T [T [T [T [Te [T [T [T T T T T T T T T T T Tp [Tp

E

Chapter 5. Creating Web Applications in Entity Framework with MVC

return roles;

}

/Il <summary>

/Il Creating a new role

/Il </[summary>

/Il <param name="roleName">Role name</param>
public override void CreateRole(string roleName)

{
using (DbModel db = new DbModel())

{
WEBROLE newRole = new WEBROLE() { NAME = roleName };
db.WEBROLES.Add(newRole);
db.SaveChanges();

}
}

/Il <summary>
/Il Returns whether the user role is present
Il </[summary>
/Il <param name="username">User name</param>
/Il <param name="roleName">Role name</param>
Il <returns></returns>
public override bool IsUserInRole(string username, string roleName)
{
bool outputResult = false;
using (DbModel db = new DbModel())
{
var userinRole =
from ur in db. WEBUSERINROLES
where ur.-WEBUSER.EMAIL == username &&
ur.WEBROLE.NAME == roleName
select new {id = ur.ID };
outputResult = userinRole.Count() > 0;

}

return outputResult;

}

public override void AddUsersToRoles(string[] usernames,

string[] roleNames)

m > m

T [Ty [T

{

throw new NotimplementedException();

}

public override string ApplicationName

{

get { throw new NotimplementedException(); }

174

Chapter 5. Creating Web Applications in Entity Framework with MVC

set { throw new NotimplementedException(); }

}

m [m»

public override bool DeleteRole(string roleName,
ool throwOnPopulatedRole)

{

throw new NotimplementedException();

}

o [Ty

T [Ty [T

public override string[] FindUsersInRole(string roleName,
tring usernameToMatch)

{

throw new NotimplementedException();

}

0w [T

m [T [T

public override string[] GetAllRoles()
{

throw new NotlmplementedException();

}

T [T [T [T

public override string[] GetUsersInRole(string roleName)

{

throw new NotlmplementedException();

}

T [T [T [T

E public override void RemoveUsersFromRoles(string[] usernames,
string[] roleNames)

{

throw new NotlmplementedException();

}

m > M

public override bool RoleExists(string roleName)

{

throw new NotimplementedException();

}
}

> [T> TP TP [T> >

For the purpose of illustration, three methods are redefined:

GetRolesForUser

for obtaining a set of roles for a specified user

CreateRole

for creating a role

IsUserInRole

determines whether the user has a specified role in the system

175

Chapter 5. Creating Web Applications in Entity Framework with MVC

Configuring the Role Provider for Use

To use the role provider in the application, we need to add its definition to the configuration file.
Open the web.config file and remove the definition of providers added automatically during the
installation of the Microsoft. AspNet.Providers package.

Next, we insert our provider within the system.web section:

<system.web>
E <authentication mode="Forms">
<forms name="cookies" timeout="2880" loginUrl="~/Account/Login"
defaultUrl="~/Invoice/Index"/>
</authentication>
<roleManager enabled="true" defaultProvider="MyRoleProvider">
<providers>
<add name="MyRoleProvider"
type="FBMVCExample.Providers.MyRoleProvider" />
</providers>
E </roleManager>
</system.web>

T T [T [T [y Ty mp mp

5.12. Authorizing Access to Controller Methods

Now we can limit (filter) access to the methods of various controllers using the Authorize attribute.
We have already seen how it is used in the AccountController controller:

[Authorize(Roles = "admin")]
public ActionResult Register()
{E

This filter can be used at two levels: on a controller as a whole and on an individual operation of a

controller. We will set different rights for our main controllers: CustomerController ,
InvoiceController and ProductController . In our project, a user with the MANAGE®e can view and
edit data in all three tables. Setting a filter for the InvoiceController controller would be coded as
follows:

176

Chapter 5. Creating Web Applications in Entity Framework with MVC

[Authorize(Roles = "manager")]
public class InvoiceController : Controller

{
E private DbModel db = new DbModel();

E // Show view

E public ActionResult Index()
E{

E return View();

E}
E

Setting filters in the other controllers can be implemented in a similar manner.

5.13. Source Code

The source code for the sample application can be obtained from FBMVCExample.zip .

177

https://www.firebirdsql.org/file/documentation/examples/en/fbdevgd30/FBMVCExample.zip

Chapter 6. Developing Web Applications with PHP and Firebird

Chapter 6. Developing Web Applications with
PHP and Firebird

In this chapter, we are going to create a web application using the PHP language with Firebird as
the back-end. It is assumed that you have a web server, such as Apache HTTP Server or Nginx with
PHP installed and active and a Firebird server available in the stack and running. A lightweight,
stand-alone package such as QuickPHP would be enough for testing and debugging your project
locally.

If your server supports PHP, you just create your .php files, put them in your web directory and the
server will automatically parse them for you. PHP-enabled files are simply HTML files with a whole
language of custom tags embedded in them. There is nothing to compile.

6.1. Interfacing PHP and Firebird

To communicate with a Firebird database, you will need a driver.

6.1.1. PHP Drivers for Firebird

Two free, downloadable drivers are available for interfacing with Firebird:

¥ The Firebird/Interbase extension (ibase_ functions)

¥ The PDO driver for Firebird

Firebird Client Library

Both drivers require that you have the fbclient.dll client library installed (fbclient.so for POSIX
systems). Make sure it is for the correct CPU register width (32-bit or 64-bit) to match that of your

web server/PHP installation. For example, if you have a 64-bit machine running 64-bit Firebird and

32-bit Apache/PHP then you need the 32-bit driver.

Note to Win32/Win64 users

For the drivers to work with the Windows PATHsystem variable, the fbclient.dll

DLL file must be available. Copying the DLL file from the PHP directory or a
Firebird installation to the Windows system folder would work, because the
system directory is in the PATH variable by default. However, it is not
recommended. The more robust way to do it is to prepend the file path to the PATH
variable explicitly yourself, using the Windows advanced administration tool.

Make sure you have the matching release version of the Firebird client for your Firebird server.

The Firebird/InterBase Extension

The Firebird/Interbase (OFb/IBO) extension predates the PDO driver and is regarded as the more
proven solution of the two.

To install the extension, uncomment this line in the php.ini configuration file:

178

Chapter 6. Developing Web Applications with PHP and Firebird

extension=php_interbase.dll

or this line on Linux and other POSIX systems:

extension=php_interbase.so

Installing the Fb/IB Extension on Linux

In Linux, one of the following commands should work. The one you use depends on the distribution
package and the versions it supports:

apt-get install php5-firebird

rpm -ihv php5-firebird

yum install php70w-interbase

zypper install php5-firebird

You might need to enable third party repositories if you find you have
unresolvable dependency problems.

Programming Style

The Firebird/InterBase extension uses a procedural approach to developing programs. Functions
with the ibase_ prefix can return or accept the identifier (ID) of a connection, transaction, prepared
query or cursor (the result of the SELECTuery) as one of their parameters. This identifier is a
server-allocated resource which, like all allocated resources, should be released immediately it is
no longer needed.

The PHP functions will not be described in detail here. You can study their descriptions at
https://php.net/ibase . Several small examples with comments will be provided instead.

179

https://php.net/ibase

Chapter 6. Developing Web Applications with PHP and Firebird

<?php

$db = 'localhost:example’;

$username = 'SYSDBA';

$password = 'masterkey’;

/I Connect to database

$dbh = ibase_connect($db, $username, $password);
$sql = 'SELECT login, email FROM users';
/I Execute query

$rc = ibase_query($dbh, $sql);

/I Get the result row by row as object
while ($row = ibase_fetch_object($rc)) {

E echo $row->email, "\n";

}

/I Release the handle associated with the result of the query
ibase_free_result($rc);

/I Release the handle associated with the connection
ibase_close($dbh);

The ibase_ Connect Functions

The ibase_pconnect function, that creates so-called Opersistent connectionsO, could be used instead
of ibase_connect. A call to ibase_close on this style of connection does not close it but all resources
allocated to it will be released. The default transaction is committed, while any others are rolled
back. This type of connection can be re-used in another session if the connection parameters match.

Persistent connections can increase the performance of a web application, sometimes considerably.
It is especially noticeable if establishing a connection involves a lot of traffic. They allow a child
process to use the same connection throughout its entire lifetime instead of creating a connection
every time a page interacts with the Firebird server. Persistent connections are not unlike working
with a connection pool.

You can find more details about persistent connections at https://php.net/persistent-connections

Need to know

Many ibase functions cannot accommodate the identifier of a connection,

transaction or prepared query. Those functions use the identifier of the last
established connection or last started transaction instead of the relevant identifier.
It is not a recommended practice, especially if your web application can use more
than one connection.

ibase_query

The ibase_query function executes an SQL query and returns the identifier of the result or True if
the query returns no data set. Along with the connection or transaction ID and the text of the SQL
query, this function can accept a variable number of parameters to populate the SQL query
parameters. For example,

180

https://php.net/persistent-connections

Chapter 6. Developing Web Applications with PHP and Firebird

IIE

$sql = 'SELECT login, email FROM users WHERE id=?";
$id = 1;

/I Execute query

$rc = ibase_query($dbh, $sql, $id);

/I Get the result row by row as object

if ($row = ibase_fetch_object($rc)) {

E echo $row->email, "\n";

}

/I Release the handle associated with the result of the query
ibase_free_result($rc);

Il E

Parameterized queries are typically used multiple times with fresh sets of parameter values each
time. Prepared queries are recommended for this style of usage. The identifier of a query is
returned by the function ibase_prepare and then the prepared query is executed using the function
ibase_execute.

Il E

$sql = 'SELECT login, email FROM users WHERE id=?";
/l Prepare statement

$sth = ibase_prepare($dbh, $sql);

$id = 1;

/I Execute statement

$rc = ibase_execute($sth, $id);

/Il Get the result row by row as object

if ($row = ibase_fetch_object($rc)) {

E echo $row->email, "\n";

}

/I Release the handle associated with the result of the query
ibase_free_result($rc);

/I Release the prepared statement
ibase_free_query($sth);

Prepared queries are very often used when a large amount of data input is anticipated.

181

Chapter 6. Developing Web Applications with PHP and Firebird

IIE

$sql = 'INSERT INTO users(login, email) VALUES(?, ?)";
/I Prepare statement

$sth = ibase_prepare($dbh, $sql);

$users = [["userl"”, "userl@gmail.com"], ["user2", "user2@gmail.com"]J;
/I Execute statement

foreach ($users as $user)) {

E ibase_execute($sth, $user[0], $user[1]);

}

/I Release the prepared statement
ibase_free_query($sth);

Il E

It is actually a disadvantage of this extension that functions can take a variable number of
parameters. It less than ideal for parameterized queries, as the last example demonstrates. It is
especially noticeable if you try to write a universal class for executing any query. It would be much
more useful to be able to send parameters in one array.

This would be one way to get around it:

function fb_execute ($stmt, $data)

m

if (lis_array($data))

E return ibase_execute($stmt, $data);

E array_unshift($data, $stmt);

E $rc = call_user_func_array('ibase_execute', $data):
E return $rc;

}

The Fb/IB extension does not support named parameters in queries.

ibase_trans

By default, the Fb/IB extension commits the transaction automatically after executing each SQL
guery, making it necessary to start a transaction with the function ibase_trans if you need to
control transactions explicitly. An explicit transaction is started with the following parameters if

none are provided: IBASE_WRITE | IBASE_CONCURRENCY | IBASEYWAtEN find the description of
predefined constants for specifying the parameters of a transaction here. A transaction must be
completed by either ibase_commitor ibase_rollback .

This extension supports the COMMIT RETA#Nd ROLLBACK RETAi&tameters directly if you use the
functions ibase_commit_ret or ibase_rollback_ret , respectively, instead.

182

https://php.net/manual/en/ibase.constants.php

Chapter 6. Developing Web Applications with PHP and Firebird

The default transaction parameters are good for most cases and it is really rarely
that you need to change them. A connection to the database, along with all
resources allocated to it, exists for no longer than it takes for the PHP script to
complete. Even if you use persistent connections, all allocated resources will be
released after the ibase_close function is called. Even so, | strongly recommend
releasing all allocated resources explicitly by calling the corresponding ibase
functions.

| advise strongly against using the ibase_commit_ret and ibase_rollback_ret
functions because they have no place in a web application. The purpose of COMMIT
RETAINind ROLLBACK RETAdNo keep cursors open in desktop applications when a
transaction ends.

$sql = 'INSERT INTO users(login, email) VALUES(?, ?);
/[Prepare statement
$sth = ibase_prepare($dbh, $sql);
$users = [["userl", "userl@gmail.com”], ["user2", "user2@gmail.com"]];
$trh = ibase_trans($dbh, IBASE_WRITE | IBASE_CONCURRENCY | IBASE_WAIT);
try {
E // Execute statement
E foreach ($users as $user)) {
$r = ibase_execute($sth, Suser[0], Suser[1]);
/I If an error occurs, throw an exception
if ($r === false)
throw new \Exception(ibase_errmsg());

}

ibase_commit($trh);

=~ [T> TP [T> [T> [T» T»

catch(\Exception $e) {
E ibase_rollback($trh);
E echo $e->getMessage();

}

/I Release the prepared statement
ibase_free_query($sth);

ibase_ functions raise no exception if an error occurs, although an error will cause
some to return False. Note that it is essential to use the === strict relational
operator to compare the result to False. Calling any ibase function could result in

an error.

The function ibase_errmsg is available to discover an error message and the
function ibase_errcode can provide the error code.
Services API Calls

The Fb/IB extension can interact with the Firebird server by way of functions that wrap calls to the
Services API: ibase_service attach , ibase_ service detach, ibase_server_info , ibase maintain_db,
ibase_db_info, ibase_backup, ibase_restore . They can return information about the Firebird server,

183

Chapter 6. Developing Web Applications with PHP and Firebird

initiate a backup or restore or get statistics. We are not examining them in detail, since they are
required mainly to administer a database, a topic that is outside the scope of this project.

Firebird Events

The Firebird/Interbase extension also supports working with Firebird events by means of a set of
functions: ibase_set _event_handler , ibase_free_event_handler , ibase_wait_event .

The PDO (Firebird Driver)

The PDO extension is a common interface for accessing various types of databases. Each database
driver that implements this interface can provide database-specific features in the form of standard
extension functions.

PDO and all basic drivers are built into PHP as extensions. To use them, just enable them by editing
the php.ini file as follows:

extension=php_pdo.dll

This step is optional for PHP versions 5.3 and higher because DLLs are no longer
needed for PDO to work.

Firebird-specific Library

The other requirement is for database-specific DLLs to be configured; or else loaded during
execution by means of the dI() function; or else included in php.ini following php_pdo.dll . For
example:

extension=php_pdo.dll
extension=php_pdo_firebird.dll

These DLLs must be in the directory extension_dir .

In Linux, one of the following commands should work. The one you use depends on the distribution
package and the versions it supports:

apt-get install php5-firebird
rpm -ihv php5-firebird
yum install php70w-firebird

zypper install php5-firebird

Programming Style

PDO uses an object-oriented approach to developing programs. The DSN (Data Source Name), a.k.a.

184

Chapter 6. Developing Web Applications with PHP and Firebird

connection string, determines which specific driver will be used in PDO. The DSN consists of a
prefix that determines the database type and a set of parameters in the form of <key>=<value>
separated by semicolons. The valid set of parameters depends on the database type.

To be able to work with Firebird, the connection string must start with the firebird: prefix and
conform to the format described in the PDO_FIREBIRD DSN section of the documentation.

Making Connections

Connections are established automatically during creation of the PDO from its abstract class. The
class constructor accepts parameters to specify the data source (DSN) and also the optional
username and password, if any. A fourth parameter can be used to pass an array of driver-specific
connection settings in the key=value format.

$dsn = 'firebird:dbname=localhost:example;charset=utf8;’;
$username = 'SYSDBA'";
$password = 'masterkey’;

try {
E // Connect to database

E $dbh = new \PDO($dsn, $username, $password,

E [\PDO::ATTR_ERRMODE =>\PDO::ERRMODE_EXCEPTION]);
E $sql = 'SELECT login, email FROM users";

E // Execute query

E $query = $dbh->query($sql);

E // Get the result row by row as object

E while ($row = $query->fetch(\PDO::FETCH_OBJ)) {
E echo $row->email, "\n";

E}

E $query->closeCursor();

} catch \PDOException $e) {

E echo $e->getMessage();

}

Persistent connections

I For PDO to use persistent connections, the array of attributes must be passed to the
PDO constructor with PDO::ATTR_PERSISTENT ! true

Exception Handling

The PDO driver is much more friendly than the Firebird/InterBase extension with respect to

exception handling. Setting the \PDO::ATTR_ERRMQ@BDEbute to the value \PDO::ERRMODE_EXCEPTION
specifies a mode in which any error, including a database connection error, will raise the exception
\PDOEXxception

This is superior to the laborious procedure of checking whether an error has occurred each time an
ibase_ function is called.

185

https://php.net/manual/en/ref.pdo-firebird.connection.php

Chapter 6. Developing Web Applications with PHP and Firebird
Querying

The query method executes an SQL query and returns the result set in the form of a \PDOStatement
object. A fetch to this method can return the result in more than one form: it could be a column, an
instance of the specified class, an object.

The various ways of calling query can be found in the documentation .

Queries with No Data Set

For executing an SQL query that returns no data set, you can use the exec method that returns the
number of affected rows.

Executing prepared queries is not supported by exec.

Parameterized Queries

If there are parameters in the query, prepared queries must be used. For this, the prepare method is
called instead of the query method. The prepare method returns an object of the \PDOStatementlass
that encapsulates methods for working with prepared queries and their results. Executing the

guery requires calling the execute method that can accept as its parameter an array of named or
unnamed parameters.

The result of executing a SELECTuery can be obtained with one the following methods: fetch ,
fetchAll , fetchColumn, fetchObject . The fetch and fetchAll methods can return results in various
forms: an associative array, an object or an instance of a particular class. The class instance option

is quite often used in the MVC pattern during work with models.

$dsn = ‘firebird:dbname=localhost:example;charset=utf8;’;
$username = 'SYSDBA";
$password = 'masterkey’;
try {
E // Connect to database
E $dbh = new \PDO($dsn, $username, $password,
E \PDO::ATTR_ERRMODE => \PDO::ERRMODE_EXCEPTION]);
E $sql = 'INSERT INTO users(login, email) VALUES(?, ?)’;
= $users = |
['userl”, "userl@gmail.com"],

['user2", "user2@gmail.com"]

m > M

ET

E // Prepare statement

E $query = $dbh->prepare($sql);
E // Execute statement

E foreach ($users as $user)) {

E $query->execute($user);

E}

} catch (\PDOException $e) {

E echo $e->getMessage();

}

186

https://php.net/manual/en/pdo.query.php
https://php.net/manual/en/pdo.exec.php

Chapter 6. Developing Web Applications with PHP and Firebird

An example using named parameters:

$dsn = ‘firebird:dbname=localhost:example;charset=utf8;';
$username = 'SYSDBA'";

$password = 'masterkey’;

try {

E // Connect to database

E $dbh = new \PDO($dsn, $username, $password,

E [\PDO::ATTR_ERRMODE =>\PDO::ERRMODE_EXCEPTION]);

E $sqgl = 'INSERT INTO users(login, email) VALUES(:login, :email)’;
E $users =

E [“:login" => "userl", ":email" => "userl@gmail.com"],
E ["login" => "user2", ":email" => "user2@gmail.com"]
EJ;

E // Prepare statement

E $query = $dbh->prepare($sql);

E // Execute statement

E foreach ($users as $user)) {

E $query->execute($user);

E}

} catch \PDOEXxception $e) {

E echo $e->getMessage();

}

In order to support named parameters, PDO preprocesses the query and replaces
parameters of the : paramnaméype with 0?0, retaining the array of correspondence
between the parameter names and their left-to-right positions in the query. For

that reason, the EXECUTE BLO&#&tement will not work if there are colon-prefixed

variables. Currently, PDO offers no workaround to support a parameterized
EXECUTE BLOsTatement, such as by specifying an alternative prefix for parameters

as has been implemented in some access components.

Another Way to Do It

An alternative way to pass parameters to a query is by using ObindingO. The

bindValue method binds

a value to a named or unnamed parameter. The bindParammethod binds a variable to a named or
unnamed parameter. The bindParammethod is especially useful for stored procedures that return a
value via the OUT or IN OUT parameter, which is different to the mechanism for returning values

from stored procedures in Firebird.

187

Chapter 6. Developing Web Applications with PHP and Firebird

$dsn = 'firebird:dbname=localhost:example;charset=utf8;’;

$username = 'SYSDBA";

$password = 'masterkey’;

try {

E // Connect to database

E $dbh = new \PDO($dsn, $username, $password,

E [\PDO::ATTR_ERRMODE => \PDO::ERRMODE_EXCEPTION]);
E $sql = 'INSERT INTO users(login, email) VALUES(:login, :email)’;

E $users =

E ['userl", "userl@gmail.com"],
E ['user2", "user2@gmail.com"]
EJ;

E // Prepare statement

E $query = $dbh->prepare($sql);
E // Execute statement

E foreach ($users as $user)) {

E $query->bindValue(":login", $user[0]);
E $query->bindValue(":email", $user[1]);
E $query->execute();

E}

} catch (\PDOEXxception $e) {
E echo $e->getMessage();

}

Caution

The numbers associated with unnamed parameters for the
bindValue methods start from 1.

188

bindParam and

Chapter 6. Developing Web Applications with PHP and Firebird

$dsn = 'firebird:dbname=localhost:example;charset=utf8;’;
$username = 'SYSDBA";
$password = 'masterkey’;
try {
E // Connect to database
E $dbh = new \PDO($dsn, $username, $password,
E \PDO::ATTR_ERRMODE =>\PDO::ERRMODE_EXCEPTION]);
E $sql = 'INSERT INTO users(login, email) VALUES(?, ?)';
Susers = |
[‘userl", "userl@gmail.com"],
E ['user2", "user2@gmail.com"]
EJ;
E // Prepare statement
E $query = $dbh->prepare($sql);
E // Execute statement
E foreach ($users as $user)) {
$query->bindValue(1, $user[0]);
$query->bindValue(2, $user[1]);
$query->execute();

m™ [m»

™ [T [T

E}
} catch (\PDOEXxception $e) {
E echo $e->getMessage();

}

Transactions

By default, PDO commits the transaction automatically after executing each SQL query. If you want

to control transactions explicitly, you need to start a transaction with the method
\PDO::beginTransaction . By default, a transaction is started with the following parameters:
CONCURRENCY | WAIT | READ_WHRTEansaction can be ended with the \PDO::commit or
\PDO::rollback method.

189

Chapter 6. Developing Web Applications with PHP and Firebird

$username = 'SYSDBA';

$password = 'masterkey’;

try {

E // Connect to database

E $dbh = new \PDO($dsn, $username, $password,

E [\PDO::ATTR_ERRMODE => \PDO::ERRMODE_EXCEPTION]);
E // Start the transaction to ensure consistency between statements
E $dbh->beginTransaction();

E // Get users from one table

E $users_stmt = $dbh->prepare('SELECT login, email FROM old_users');
E $users_stmt->execute();

E $users = $users_stmt->fetchAll(\PDO::FETCH_OBJECT);

E $users_stmt->closeCursor();

E // And insert into another table

E $sqgl = 'INSERT INTO users(login, email) VALUES(?, ?)';

E // Prepapre statemenet

E $query = $dbh->prepare($sql);

E // Execute statememt

E foreach ($users as $user)) {

$query->bindValue(1, $user->LOGIN);

$query->bindValue(2, $user->EMAIL]);

$query->execute();

m [Ty [T

E}

E // Commit transaction

E $dbh->commit();

} catch \PDOEXxception $e) {

E // Rollback transaction

E if ($dbh && $dbh->inTransaction())
E $dbh->rollback();

E echo $e->getMessage();

}

Changing Transaction Parameters

Unfortunately, the beginTransaction method does not permit transaction parameters to be changed,
but you can do the trick by specifying transaction parameters in the SQL statement SET TRANSACTION

$dbh = new \PDO($dsn, $username, $password);

$dbh->setAttribute\PDO::ATTR_AUTOCOMMIT, false);

$dbh->exec("SET TRANSACTION READ ONLY ISOLATION LEVEL READ COMMITTED NO WAIT");
/I Perform actions in the transaction

IIE

$dbh->exec("COMMIT");

$dbh->setAttribute\PDO::ATTR_AUTOCOMMIT, true);

6.1.2. Comparing the Drivers

The following table summarises the capabilities offered by the two drivers for working with

190

Chapter 6. Developing Web Applications with PHP and Firebird

Firebird.

Table 7. Comparing the Firebird/InterBase and PDO Drivers

Capability
Programming paradigm

Supported database engines

Handling query parameters

Error handling

Transaction management

Firebird-specific features

Fb/IB Extension
Procedural

Firebird and InterBase; or
clones of either

Only unnamed parameters, not
very convenient because the
functions used allow the
number of parameters to be
variable

Requires checking the results of
the ibase_errmsg, ibase_errcode
functions. An error may occur
after any ibase_ function call
without raising any exception.

Allows transaction parameters
to be specified

Supports work with the
Services API (backup, restore,
statistics, etc.) and with
database events

PDO Extension
Object-oriented

Any database engine for which
there is a PDO driver, including
Firebird

Can work with both named and
unnamed parameters. Very
convenient although some
Firebird features (the
BLOCKtatement) do not work.

An optional mode is provided to
raise exceptions on any error

Does not allow transaction
parameters to be specified.
Workaround: execute the SQL
statement SET TRANSACTION

Does not support any database-
specific feature that cannot be
implemented directly using an
SQL statement

From these comparisons we can conclude that PDO is better equipped than the FB/IB extension for

most frameworks.

6.2. Choosing a Framework for Building a Web

Application

EXECUTE

Small websites can be developed without using the MVC pattern. However, the larger your website
gets, the more complicated it becomes to maintain, especially if more than one person is working
on it. Hence, this is the pattern we are going to use for developing our web application.

Having decided to use the MVC pattern, we do have a few issues to think about. Development of an
application modeled on this pattern is not so easy as it may seem, especially if we do not use third-
party libraries. If you write everything on your own, you will have to solve a lot of problems:
automatically loading .php files enabling the definition of classes, routing, and so on.

Several frameworks have been created for solving these problems, such as Yii, Laravel, Symphony,
Kohana and many more. My personal preference is Laravel, so the development of the application
described here is going to use this framework.

191

Chapter 6. Developing Web Applications with PHP and Firebird

6.3. Installing Laravel

Before installing Laravel, make sure that your system environment meets the requirements.

¥ PHP>=55.9

¥ PDO extension

¥ MCrypt extension

¥ OpenSSL extension
¥ Mbstring extension

¥ Tokenizer extension

6.3.1. Installing Composer

Laravel uses Composer to manage dependencies. Install Composer first and then install Laravel.

The easiest way to install Composer on Windows is by downloading and running the installation
file: Composer-Setup.exe . The installation wizard will install Composer and configure PATHso that
you can run Composer from the command line in any directory.

If you need to install Composer manually, go to https://getcomposer.org/download/ and pick up a
fresh installation script that will do as follows:

¥ Downloads the installation file to the current directory

¥ Checks the installation file using SHA-384

¥ Runs the installation script

¥ Removes the installation script

Caution

Because this script changes with each new version of the installer, you will always
need to have the latest version when reinstalling.

After you run the script, the composer.phar file will appear. The .phar extension marks an archive
but, actually, it is a PHP script that can understand only a few commands (install, update, E) and
can download and unpack libraries.

Windows

If you are working in Windows, you can make it easier to work with Composer by
creating the composer.bat file. Run the following command:

echo @php "%~dpOcomposer.phar" %*>composer.bat

Then set up your PATHo0 that you can just call composerfrom any directory in your
command shell.

192

https://getcomposer.org/
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/download/

Chapter 6. Developing Web Applications with PHP and Firebird

More details about installing Composer are available here .

6.3.2. Installing Laravel

Now, to install Laravel:

composer global require "laravel/installer”

6.4. Creating a Project

If the installation is successful, we can carry on with creating the project framework. Enter:
laravel new fbexample

Wait until it finishes creating the project framework. A description of the directory structure can be
found in the Laravel documentation

6.4.1. Our ProjectOs Structure

These are the directories we are most interested in:

app
The main directory of our application. Models will be located in the root directory. The Http
subdirectory contains everything that is related to working with the browser. The
Http/Controllers subdirectory contains our controllers.

config

The directory with configuration files. You will discover more details about the configuration
process later.

public

The root directory of the web application (DocumentRoot). It contains static files: css, js, images,
etc.

resources

Contains views, localization files and, if any, LESS files, SASS and js applications on such
frameworks as ReactJS, AngularJS or Ember that are later put together into the public folder
with an external tool.

The root directory of our application contains the composer.json file that describes the packages our
application will need besides those that are already present in Laravel.

We will need two such packages: zofe/rapyd-laravel for building a quick interface with grids and
edit dialog boxes, and sim1984/laravel-firebird , an extension for working with Firebird databases.

The sim1984/laravel-firebird package is the authorOs fork of the jacquestvanzuydam/laravel-
firebird package. Its installation is a bit different. A description of how the package differs from the

193

https://getcomposer.org/doc/00-intro.md
https://laravel.com/docs/5.2/structure
https://github.com/zofe/rapyd-laravel
https://github.com/sim1984/laravel-firebird

Chapter 6. Developing Web Applications with PHP and Firebird

original is available in the article Package for working with the Firebird DBMS in Laravel if you can
read Russian. An English-language description of the packages and the changes from the original
can be found in the readme.md document at this URL: https://github.com/sim1984/laravel-firebird

Caution

Remember to set the minimum-stability parameter to 'dev' because the package is
not stable enough to publish at https://packagist.org . You will need to modify the
composer.json file (see below) to add a reference to the gitHub repository.

In the file composer.json:

"repositories"; [

E{

E "type": "package",

E "package": {

E "version": "dev-master",

E "name": "sim1984/laravel-firebird",
E "source": {

E "url": "https://github.com/sim1984/laravel-firebird",
E "type": "git",

E "reference": "master"

E 1}

E "autoload": {

E “classmap": ["]

E }

E }

E}

[a—

Use the require section to add the required packages in the following way:

"zofelrapyd": "2.2.*",
"sim1984/laravel-firebird": "dev-master"

Now you can start updating the packages with the following command, which must be started in
the root directory of the web application:

composer update

On completion of that command, the new packages will be installed in your application.

6.4.2. Configuration

Now we can get down to configuration. To get it started, execute the following command to create
additional configuration files for the zofe/rapyd package:

194

https://habrahabr.ru/post/312874/
https://github.com/sim1984/laravel-firebird
https://packagist.org

Chapter 6. Developing Web Applications with PHP and Firebird
php artisan vendor:publish

We add two new providers to the file config/app.php by adding two new entries to the providers
key:

Zofe\Rapyd\RapydServiceProvider::class,
Firebird\FirebirdServiceProvider::class,

We proceed to the file config/databases.conf (not to be confused with databases.conf in your
Firebird server root!) that contains the database connection settings. Add the following lines to the
connections key:

firebird' => [

E 'driver' => "firebird',

E 'host' => env('DB_HOST", 'localhost),

E 'port' => env('DB_PORT", '3050"),

E 'database’ => env('DB_DATABASE', 'examples’),

E 'username’ => env('DB_USERNAME', 'SYSDBA),
E 'password' => env('DB_PASSWORD', 'masterkey"),
E 'charset' => env('DB_CHARSET", 'UTF8),

E 'engine_version' => '3.0.0,

1,

Since we will use our connection as the default connection, specify the following:
E'default' => env('DB_CONNECTION!, 'firebird"),

Pay attention to the env function that is used to read the environment variables of the application
from the special .env file located in the root directory of the project. Correct the following lines in
the .env file:

DB_CONNECTION=firebird
DB_HOST=localhost
DB_PORT=3050
DB_DATABASE=examples
DB_USERNAME=SYSDBA
DB_PASSWORD=masterkey

Edit the config/rapyd.php configuration file to change the date and time formats to match those
used in your locale:

195

Chapter 6. Developing Web Applications with PHP and Firebird

fields' => [

E 'attributes' => ['class' => ‘form-control1],
E 'date' => [

E ‘format' =>'Y-m-d',

E]

E 'datetime’ => [

E ‘format =>'Y-m-d H:i:s,
E ‘'store_as'=>'Y-m-d H:i:s,
El

1

That completes the initial configuration. Now we can start building the logic of the web application.

6.5. Creating Models

The Laravel framework supports the Eloquent ORM, an elegant and simple implementation of the
ActiveRecord pattern for working with a database. Each table has a corresponding class model that
works with it. Models enable the application to read data from tables and write data to a table. The
model we are going to work with complies fully with the one illustrated earlier, at the beginning of
the Database chapter .

6.5.1. A Tool for Model-making

To create a model for our customer entity, Laravel offers the artisan command that makes it
relatively easy. This is the command for creating a model template:

php artisan make:model Customer

We want to change the model so that it looks like this:

196

Chapter 6. Developing Web Applications with PHP and Firebird

namespace App;
use Firebird\Eloquent\Model;

class Customer extends Model

{

E Jx*

E * Table associated with the model
E *

E * @var string

E ¥/

E protected $table = 'CUSTOMER;

E Jx*

E * Primary key of the model

E *

E * @var string

=

E protected $primaryKey = 'CUSTOMER_ID';
E J**

E * Our model does not have a timestamp
E *

E * @var bool

E *

E public $timestamps = false;

/**

* The name of the sequence for generating the primary key
*

* @var string

*/

protected $sequence = 'GEN_CUSTOMER_ID';

=~ [Tp T > T e rmp

Notice that we use the modified Firebird\Eloquent\Model model from the sim1984/laravel-firebird
package as the basis. It allows us to use the sequence specified in the $sequenceattribute to generate
values for the primary key ID.

We create a model for products"N" Product"N"in the same way.

197

Chapter 6. Developing Web Applications with PHP and Firebird

namespace App;
use Firebird\Eloquent\Model;

class Product extends Model

{

E Jx*

E * Table associated with the model
E *

E * @var string

E ¥/

E protected $table = 'PRODUCT;

E Jx*

E * Primary key of the model

E *

E * @var string

E ¥

E protected $primaryKey = 'PRODUCT _ID";

E J**

E * Our model does not have a timestamp
E *

E * @var bool

=

E public $timestamps = false;

E
E * The name of the sequence for generating the primary key

E *

E * @var string

E ¥

E protected $sequence = 'GEN_PRODUCT _ID';
}

Now, a model for the invoice header:

namespace App;
use Firebird\Eloquent\Model;

class Invoice extends Model {

/**

* Table associated with the model

*

* @var string

*/

E protected $table = 'INVOICE;

T [T [T [Ty mp

198

Chapter 6. Developing Web Applications with PHP and Firebird

E [x*

E * Primary key of the model

E *

E * @var string

E

E protected $primaryKey = 'INVOICE_ID";

E J¥*

E * Our model does not have a timestamp
E *

E * @var bool

=

E public $timestamps = false;

/**

* The name of the sequence for generating the primary key
*

* @var string

*/

protected $sequence = 'GEN_INVOICE_ID’;

T T I e mp me

E Jx*

E * Customer

E *

E * @return \App\Customer

=

E public function customer() {

E return $this->belongsTo('App\Customer', 'CUSTOMER_ID";
E}

E [F*

* Invoice lines

* @return \App\InvoiceLine[]

*/

E public function lines() {

E return $this->hasMany('App\InvoiceLine', 'INVOICE_ID");
E}

m [Ty [T

E

E

E

E public function pay() {

E $connection = $this->getConnection();
E S$attributes = $this->attributes;

E $connection->executeProcedure('SP_PAY_FOR_INOVICE',
E [$attributes['INVOICE_ID']);

E

}

YouOll observe some additional functions in this model. The customer function returns the customer

199

Chapter 6. Developing Web Applications with PHP and Firebird

that relates to the invoice header via the CUSTOMER fi&ld. The belongsTo method is used for
establishing this relation. The name of the model class and the name of the relation field are passed
to this method.

The function lines returns items from the invoice that are represented by a collection of
InvoiceLine models, described later. To establish the one-to-many relation in the lines function, the
name of the class model and the relation field are passed to the hasManynethod.

You can find more details about specifying relations between entities in the Relationships section of
the Laravel documentation

The pay function performs payment of an invoice by calling the stored procedure
SP_PAY_FOR_INVOQI@dssing the identifier of the invoice header. The value of any field (model
attribute) can be obtained from the attribute attribute . The executeProcedure method calls the
stored procedure.

This method is available only when the sim1984/laravel-firebird extension is
used.

6.5.2. Invoice Iltems Model

Now we are going to create a model for items in an invoice:

namespace App;

use Firebird\Eloquent\Model;
use llluminate\Database\Eloquent\Builder;

class InvoiceLine extends Model {

E J**

E * Table associated with the model
E *

E * @var string

E ¥/

E protected $table = 'INVOICE_LINE';

E J**

E * Primary key of the model

E *

E * @var string

E *

E protected $primaryKey = 'INVOICE_LINE_ID";

E J**

E * Our model does not have a timestamp
E *

E * @var bool

E ¥

E public $timestamps = false;

200

https://laravel.com/docs/5.2/eloquent-relationships
https://laravel.com/docs/5.2/eloquent-relationships

Chapter 6. Developing Web Applications with PHP and Firebird

E [x*

E * The name of the sequence for generating the primary key
E *

E * @var string

E */

E protected $sequence = 'GEN_INVOICE_LINE_ID';

E J¥*

E * Array of names of computed fields
E *

E * @var array

E *

E protected $appends = [[SUM_PRICEY;

/**

* Product

*

* @return \App\Product

*/

E public function product() {

E return $this->belongsTo('App\Product’, 'PRODUCT _ID"):;
E}

[T T [Ty [T [mp

E Jx*

E * Amount by item

E *

E * @return double

E *

E public function getSumPriceAttribute() {

E return $this->SALE_PRICE * $this->QUANTITY;

E}
/**

* Adding a model object to the database
* Override this method, because in this case, we work with a stored procedure
*
* @param \llluminate\Database\Eloquent\Builder $query
* @param array $options
* @return bool
*/
protected function performinsert(Builder $query, array $options = []) {
if ($this->fireModelEvent(‘creating’) === false) {
return false;
}
$connection = $this->getConnection();
$attributes = $this->attributes;
$connection->executeProcedure('SP_ADD_INVOICE_LINE!', [
$attributes['INVOICE_ID,
$attributesPRODUCT_ID1,
$attributes QUANTITY']

[T T [T [T T [T [T [T T T T T T T T T Ty mp

201

Chapter 6. Developing Web Applications with PHP and Firebird

D;

/I We will go ahead and set the exists property to true,

/l so that it is set when the created event is fired, just in case

I/ the developer tries to update it during the event. This will allow
// them to do so and run an update here.

$this->exists = true;

$this->wasRecentlyCreated = true;
$this->fireModelEvent(‘created’, false);

return true;

* Saving changes to the current model instance in the database

* Qverride this method, because in this case, we work with a stored procedure
*

* @param \llluminate\Database\Eloquent\Builder $query

* @param array $options

* @return bool

protected function performUpdate(Builder $query, array $options = []) {

$dirty = $this->getDirty();
if (count($dirty) > 0) {
/I'If the updating event returns false, we will cancel
/I the update operation so developers can hook Validation systems
/l into their models and cancel this operation if the model does
/I not pass validation. Otherwise, we update.
if ($this->fireModelEvent('updating'’) === false) {
return false;
}
$connection = $this->getConnection();
$attributes = $this->attributes;
$connection->executeProcedure('SP_EDIT_INVOICE_LINE', [
$attributes[INVOICE_LINE_ID1,
$attributes QUANTITY']

D;
$this->fireModelEvent('updated’, false);

E Jx*

E

m [T [T [mp

* Deleting the current model instance from the database

* Override this method, because in this case, we work with a stored procedure
*

* @return void

*/

E protected function performDeleteOnModel() {

T T [Ty [T [Ty

$connection = $this->getConnection();

$attributes = $this->attributes;

$connection->executeProcedure('SP_DELETE_INVOICE_LINE',
[$attributes['INVOICE_LINE_ID));

}

202

