The FatController
The Manual.
Copyright (c) 2005 Matthew Warren.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Table of Contents

2Table of Contents

3Revision History

4Overview

5Introduction

6Installation

7Quick-Start guide.

8Using the command line

10Using Entities.

12Working with Daemons and Alerts.

14Defining a Daemon

17Entity Reference

18Technical bits and pieces

21Frequently Asked Questions

Revision History

14/09/05

v1f8r1s
Added ENTITYGROUP entity type

GUI development abandoned. Technology review required.

Fixed UNIX installer errors.

28/05/05

v1f7r1a
Bought under GNU public license.

DaemonManager class incorporated and code updated.

09/02/05

v1f6r1a
Woo! up to version1 - the GUI.. or what there is of it!

 featureset still v6

 release 1 alpha

08/02/05

v0f6r2a
fixed load IOErrors

08/02/05

v0f6r1a
Switched Versioning Scheme to

 version()featureset()release()a/b/-

 Added new entity LOCAL, execs local cmds

02/02/05

v0.1.5a
Added new options;

 FATCONTROLLER VERBOSE yes/no

 TSM
 DATAONLY yes/no

 FATCONTROLLER DEVELOPER yes/no

 FATCONTROLLER DEVELOPERPATH {path}

28/01/05

v0.1.4a
Added scripting capability commands

 addline

 insline

 delline

 run
v0.1.3a

Collectors now write data to file if filename!=’none’
· collectors work with un-rooted filenames. IE; a filename will have ‘/opt/yab/FatController/data/’ or ‘c:\’ pre-pended to them depending on the type of system being used.
· schedules are now shown in local-times rather than seconds-since-the-epoch.
· now+x notation now works for schedule start and end times.

· Updated manual with entity reference.

v0.1.2a
Now it really does work under unix!

fixed dbg() TRACE bug.

fixed shell escaping issues. escaped substitutions will have

the ‘\’s removed when executing from non-posix

environment.

v0.1.1
a
Now runs under unix and windows!

installers for unix and windows included!

v0.1.0
a
Implementation of daemon framework

v0.0.1a – v0.0.9a

Base implementation. (CLI / ENTITES / Commands)
Overview

FatController is a systems admin tool. It has been concieved with the busy, CLI friendly sysadmin in mind. It’s key features are currently

· Administration of multiple remote systems quickly and easily from a single command line.

· Supports TELNET and TSM entities currently.

· On-the-fly monitoring and alerting of multiple remote systems quickly and easily.

· Powerfull CLI features – substitutions / aliases / full scripting support using the python language.

· extensible entity framework for implementing 3rd party entities

Introduction

FatController is based around a CLI that enables commands to be run against various remote connections (or ‘entities’) easily. It is also possible to setup ‘daemons’ that are scheduled to run given commands against given entities. The output of the daemon-run commands can then be filtered and saved, or checked against alerting criteria and alerts generated. Saved data can be viewed graphically, and statisitical analysis can be carried out. ‘reporters’ can also be setup that generate reference and configuration documentation into custom reports. (reporters are not currently implemented)
Installation

Is much easier now than it used to be.
If you want to use TSM entities,

· Install TSM client
· For Unix;

· create dir …tivoli/tsm/client/ba/bin/FC_OPT

· create x.opt and x.sys files in FC_OPT where x will be the names you give the TSM entities in FatController.

· For Windows;

· create dir …tivoli\tsm\baclient\FC_OPT

· create x.opt files in FC_OPT where x will be the names you give the TSM entities in FatController

Unzip / decompress / tar –xf FatController.(ZIP || .tar.Z) according to preference. Run unixsetup.ksh or winsetup.bat depending on the color of your pants. Cry / Laugh as appropriate.

Quick-Start guide.
This will talk you through setting up a TELNET and a TSM entity, and executing a couple of commands at them. After this we will look at daemons and the CLI more closely.

Setting up a TSM entity;

· make sure there is a file FC_OPT\(entityname).OPT in your TSM baclient folder.

· Run; FC:>define entity TSM (entityname) (type) (hl_name) (ll_name) (admin) (pass)
· Where:

· (entityname) is the name of the entity… this should be the same as the .opt file you have setup in FC_OPT\
· (type) is currently unused, but should be one of single / configmanager / storageagent / client.

· (hl_name) Dotted decimal IP address. Currently not used.

· (ll_name) Port number. Usually 1500. Currently not used.

· (admin) Username for login to the target TSM server.

· (pass) Password of the user.

· To test the setup of the entity, try

· FC:> execute (entityname) q se

Setting up a TELNET entity;

· Run; FC:>define entity TELNET (entityname) (IPAddress) (Port) (user) (pass)

· where

· (entityname) is the name of the entity

· (IPAddress) is dotted decimal or DNS name.

· (port) is port to connect to. 23 for default TELNET.

· (user) is logon username

· (pass) is password for logon

· To test the setup of the entity, try

· FC:> execute (entityname) ps –ef

Using the command line

Commands are typed directly to the command line. anything that does not match an internal FC command, or an alias, will be executed against the last known entity. Execution can be forced to a specific entity by using the ‘execute’ or ‘x’ FC built-in command. once execution has been performed against a specific entity, that entity then becomes the last known entity.

The FC prompt lets you know what your current entity is. It looks like this;

FC:(entity name)>

 substitutions are used in a command by prefixing the substitution name with ‘~’.

The flow of processing on a cmd goes;

substitutions made

does line match alias?

yes-> alias expanded, substitutions made , command

executed

no ->
command executed

..this lets you use substitutions in an alias, so aliased commands can have values that depend on the current value of a substitution = rudimentary variables.

IE:-

substitute dbdevc ultrium2

alias dbbackup backup db t=full devc=~dbdevc

(substitute and ‘alias’ define substitutions or aliases)

then,

dbbackup would expand to

backup db t=full devc=~dbdevc
and then substitute to

backup db t=full devc=ultrium2

so, by changing the value of the ~dbdevc substitution, the expansion of the backupdb alias will use that value.

NOTE: you can save all of your current entity definitions, substitutions, aliases , daemons, tasks etc.. etc.. with the command

FC:> save all (name)

and load them all back in again with the command

FC:>load (name)

…if you have the file general.sav in your c:\ directory, then

FC:>load general

will load a bunch of predefined entities and substitutions to have a play with.

Using Entities.

The following executes a couple of commands against the different entities we have, then sets up some command substitutions to make life easier, and saves and loads the definitions.
We have named the entities, tsm and tnet. Command output has been stripped out. Notice how the prompt changes to reflect the last entity a command was executed against. When FatController gets a command that does not start with ‘execute’ ‘exec’ or ‘x’ (or any other builtin FatController command) it will try to execute that command against the last executed entity – IE: the entity name shown in the FC prompt.
FC:> execute tsm query session

FC:tsm> exec tsm q se

FC:tsm> x tsm q se

FC:tsm> sub xt x tsm

FC:tsm> ~xt q se

FC:tsm> execute tnet ps –ef | grep $(whoami)

FC:tnet> sub xn x tnet

FC:tnet> ~xn ps –ef | grep $(whoami)

FC:tnet> sub myprocs ps –ef | grep $(whoami)

FC:tnet> ~xn ~myprocs

FC:tnet> ~xt q se

FC:tsm> save all myprofile

FC:tsm> query session (NOTE, no ‘execute’ command….)

FC:tsm> ~xn ~myprocs
FC:tnet> ls

FC:tnet> show substitutions

FC:tnet> show entities

FC:tnet> ps –ef | grep dsmserv

FC:tnet> ~xt show config

FC:tsm> query drives

FC:tsm> load myprofile

Work through the sequence above, and notice a few subtle things going on. Look at how substitutions work (the ‘sub’ command and ~name notation). Notice the changing FC:> prompt. See what causes the FC :> prompt to change. See how FatController understands that ‘show substitutions’ as a command does not need executing against the TELNET entity as it is an internal FatController command.
Question: If I had last executed a command against a ‘TELNET’ entity, and I wanted to run a script on the TELNET entity that was called ‘show’ and took one parameter that in this case could be ‘nodes’, why can’t I just type

FC:tnet> show nodes

Answer: Because FatController will think you are using a built-in show command, and fail because it doesn’t understand ‘show nodes’

So, How can I execute my ‘show nodes’ command against my TELNET entity then?

Easy. When there is a clash between an FC Builtin command and a command that should be executed against an entity, you can always force the execution of the command by using the ‘execute’ or ‘x’ command. IE;

FC:tnet> show nodes

Bad Command

FC:tnet> x tnet show nodes

…works as expected

Working with Daemons and Alerts.

Ok, by now you should have got to grips with the FatController basics. Defining entites. Setting up substitutions. Saving and Loading it all . How the FC:> prompt works. Just those elements in themselves are quite powerful. Just those features of FatController can be used to make your work simpler quicker and less stressful. but there’s more
An advanced aspect of FatController is the ability to monitor and alert against defined entities. FatController uses the concept of ‘daemons’ to perform these functions.

A daemon can be thought of as something has has a list of tasks to accomplish according to a schedule, and each task needs to be run against a group of entities. Each time the daemon finishes running a task against an entity, it looks at the output and can decide wether to save the information, and / or generate an Alert.

‘collectors’ are the elements of a daemon that read through output generated by running a task against an entity. The collector holds instructions on how to identify the piece of data that is interesting, and optionally also holds details of when to raise an alert based on that data.

A daemon has a schedule and several tasks. A task can have several ‘subscribed’ entities. Each task can have several collectors. Each collector looks for a specific piece of data and can save it or generate an alert regarding it.
Graphically, like this;

[image: image1]
the above diagram would be shown in FatController like this; (the following is a more complete implementation than the diagram above)

FC:cars> show daemons

Currently defined daemons/tasks/schedules and associated entities:-

Daemon: TSMDaemon Sched: 1096534831.23 9999 60

 Task:-

 DBWatch q db

 Entities:- cars, rut,

 Collectors:-

 DBMax->

 TAG ^.*,.*,.*,.*,.*$

 SKIP 0

 FORMAT PctUtil,^9

 FILE notused

 ALERT 0 96.9 DB Max Util > 97%

 DBUtil->

 TAG ^.*,.*,.*,.*,.*$

 SKIP 0

 FORMAT PctUtil,^8

 FILE notused

 ALERT 0 95 DB Pct Util > 95%

 Task:-

 ScratchLevels select mediatype,count(*) from libvolumes where status='Scratch' group by mediatype

 Entities:- cars, rut,

 Collectors:-

 LTO1->

 TAG 387

 SKIP 0

 FORMAT LTO1_Scratch,^2

 FILE notused

 ALERT 30 9999 Low LTO1 Scratch. <30 remaining.

 LTO2->

 TAG 394

 SKIP 0

 FORMAT LTO2_Scratch,^2

 FILE notused

 ALERT 30 9999 Low LTO2 Scratch. <30 remaining.

Defining a Daemon
Defining a daemon and assigning it a task, and setting up alerts and subscribing entities involves several different commands. These are as follows;

· define daemon (name)

· defines a daemon. The daemon can then have a schedule and tasks assigned to it.

· define schedule (daemon name) (start) (end) (period)

· defines a schedule for a given daemon. When activated, the daemon will ‘wake up’ and perform it’s tasks according to its schedule. ‘now’ can be used to help specifying times, ie: now+10 means 10 seconds from now.
· define task (daemon name) (task name) (command)

· defines a task for the given daemon. The daemon will execute (command) against all entities subscribed to the task.

· subscribe entity (daemon name) (task name) (entity name)

· subscribes an entity to a daemons task. The entity will be included when the daemon executes the given task.

· define collector (daemon name) (task name) (collector name) (tag) (skip) (format) (file)

· defines a collector for a daemon task. A collector processes the output generated as the daemon runs the given task against each of it’s subscribed entities. The parameters are as follows;

· (dameon name)

· The name of the damon

· (task name)

· which task of the daemons the collector is for

· (collector name)

· the name of the collector

· (tag)

· a regular expression that will identify a line or lines in the output generated when task is run against a subscribed entity

· (skip)

· skip can be 0, a number, or ‘COUNT’. if skip is 0, the line that matches the (tag) is used for further processing. if skip is >0 then that many lines are skipped forward from the matching line, and the new line is used for further processing. if skip is ‘COUNT’ then the number of lines that match (tag) is used as the data value.
· (format)

· a list of label-fieldnumber pairs. The label-fieldnumber must be delimmited with a ‘^’ (caret), and label-fieldneumber lists are delimitted with ‘:’. A format parameter may look like this “PctUtil,^8:MaxUtil,^9” this would generate an output line of “PctUtil,(field 8)[space]MaxUtil,(field 9)”, where (field 8) would be the 8th whitespace-delimitted field in the line identified by (tag) etc..

· (file)

· Is the name of a file used to record the generated output lines. (file) is pre-pended with ‘/opt/yab/FatController/data’ under POSIX systems, or ‘c:\’ for win systems. The collector post-pends (is that a real word?) the string (daemonname)(taskname)(entityname)(collectorname) to (file) when values are written.
· define alert (daemon name) (task name) (collector name) (min) (max) (message)

· defines an alert for a collector. A collector checks all of it’s datavalues against it’s alert value and generates an alert if required.

· (min) gives minimum of acceptable range for the value

· (max) gives the maximum acceptale range for the value

· (message) is appended to the alert when it is generated. Intended for informative explanation of the alert condition.

· activate daemon (daemon name)

· begins excecuting the daemon according to its schedule.

· deactivate daemon (daemon name)

· stops execution of a daemon

· alerts

· lists all current alerts

The following sequence defines a daemon to monitor scratch usage on 2 TSM servers.

FC:trut> define daemon TSMDaemon

Daemon

 TSMDaemon

Defined.

FC:trut> define schedule TSMDaemon now+0 9999 60

Schedule for daemon TSMDaemon

 Begin=now+0 end=9999 period=60

Set.

FC:trut> define task TSMDaemon ScratchLevels select mediatype,count(*) from libvolumes where status='Scratch' group by mediatype

Task ScratchLevels for daemon TSMDaemon

 select mediatype,count(*) from libvolumes where status='Scratch' group by mediatype

Defined.

FC:trut> subscribe entity TSMDaemon ScratchLevels cars

Daemon TSMDaemon task ScratchLevels

 Entity cars

Subscribed.

FC:trut> subscribe entity TSMDaemon ScratchLevels rut

Daemon TSMDaemon task ScratchLevels

 Entity rut

Subscribed.

FC:trut> define collector TSMDaemon ScratchLevels LTO1 387 0 LTO1_Scratch,^2 notused

Collector LTO1 for task ScratchLevels owned by daemon TSMDaemon

 Datatag 387 Skip 0 Format LTO1_Scratch,^2 File notused

Defined.

FC:trut> define collector TSMDaemon ScratchLevels LTO2 394 0 LTO2_Scratch,^2 notused

Collector LTO2 for task ScratchLevels owned by daemon TSMDaemon

 Datatag 394 Skip 0 Format LTO2_Scratch,^2 File notused

Defined.

FC:trut> define alert TSMDaemon ScratchLevels LTO1 30 9999 Low LTO1 Scratch. <30 remaining.

Daemon TSMDaemon task ScratchLevels collector LTO1

 Alert 30 9999 Low LTO1 Scratch. <30 remaining.

Defined.

FC:trut> show daemons

Currently defined daemons/tasks/schedules and associated entities:-

Daemon: TSMDaemon Sched: 1096632440.84 9999 60

 Task:-

 ScratchLevels select mediatype,count(*) from libvolumes where status='Scratch' group by mediatype

 Entities:- cars, rut,

 Collectors:-

 LTO1->

 TAG 387

 SKIP 0

 FORMAT LTO1_Scratch,^2

 FILE notused

 ALERT 30 9999 Low LTO1 Scratch. <30 remaining.

 LTO2->

 TAG 394

 SKIP 0

 FORMAT LTO2_Scratch,^2

 FILE notused

 ALERT 0 0 Alert Not Set

From here, you would use activate daemon / deactivate daemon to controll monitoring, and the alerts command to view any raised alerts.
Entity Reference
TELNET entities.

Defined with:

define entity TELNET (name) (IP) (Port) (User) (Pass)
Where:

(name) is the name of the TELNET entity

(IP) is ip address (decimal or DNS) of the target host

(Port) is the port to telnet to. Usually 23.

(User) is the username to authenticate with

(Pass) is the password of (user)

The TELNET entities currently implemented are pretty dumb. They aren’t able to cope with full-screen sessions of Vi, for example, so unfortunatley editing text files full-screen is out at the moment.

The command __interact can be sent through a TELNET entity,

FC:>execute mytelnetentity __interact

This will drop you directly at the host system TELNET prompt. To come back from the host prompt, issue a ^D on POSIX systems, or ^Z on WINos systems.

TSM entities.
Defined With:

define entity TSM (name) (type) (servername) (port) (user) (pass)

where:

(name) is the name of the TSM entity. A corresponding (name).opt file should exist in a directory called FC_OPT under the TSM ba client binary directory. For POSIX systems, a (name).sys file must also exist.

IE:

for Windows the file

c:\program files\tivoli\tsm\baclient\FC_OPT\(name).opt

must exist.

for POSIX systems the files

/opt/tivoli/tsm/client/ba/bin/FC_OPT/(name).opt

AND

/opt/tivoli/tsm/client/ba/bin/FC_OPT/(name).sys

must exist. Unless your on AIX then /opt becomes /usr

Technical bits and pieces
files:

general.sav

is an example file filled with entities and substitutions. Handy to load in and have a look at. Should be in c:\

FatControllerCommands.sav

is a bloody great security hole but a nice idea. It defines the ‘commands’ that FatController understands. Pieces of it get ‘exec’ed hence the nasty security hole. should be in c:\

The format of a FatControllerCommands.sav line is as follows;

(string) [(…string)] [input:(boolean expression)] [+*] create:method_invocation([(SplitCmd[n])])

(string) elements match the command name

input: elements must evaluate to true or false. the symbol ‘<<’ means ‘what is typed in this field. So, input:’<<’!=’’ would mean ‘what was typed is not a null string’. input:EntityManager.isEntity(‘<<’) would mean evaluate the method call EntityManager.isEntity((whatever was typed))

create: elements specify a method call that performs the command action. The splitCmd[n] value is a python list where n indexes the fields in the typed command.
FatController.hlp

is a help file. Type ‘FC:> help’ to see it. Usually almost up to date. Rarely completely up to date. Should be in c:\

FatController.py

the Fatcontroller module. Should be in your python path

utils.py

some supporting stuff in a module. Should be in your python path.

Writing your own entities.

They need to be written in python, and implement the following ‘interface’ (ideally by subclassing ‘Entity’)

###########

START OF INTERFACE Entity

#

class entity:

 '''This is a dummy class intended for subclassing by entities.

 An entity is defined with class entitytype(entity):

 It must implement the following functions:-'''

 Opts={} #for holding settable entity options

 def execute(self,CmdList):

 '''Generic method.

 CmdList should be parsed and executed against the given entity (self).

 The return value should be a list of output elements readable by

 entity.display()'''

 return # List of lines readable by display() method

 def display(self,LineList):

 '''Generic method for displaying output from entity.execute().

 This method should be implmented by the subclasser and translate

 the given LineList to human-readable output.'''

 return # print LineList, LineList is (minimally) output from execute() method

 def getname(self):

 '''Convenience method for getting entity name.

 should return a string representing the entity uniquely'''

 return # string that is entity name

 def getparameterstring(self):

 '''Method to determine how the entity was defined.

 Should return a string that can be fed to FatController.processcommand()

 that will re-define this entity in its entirety'''

 return

 def getentitytype(self):

 '''Get the type of entity.

 Should return qa string indicating the entities type (TELNET , TSM , BROCADE etc..)'''

 return

 def gettype(self):

 '''Return the kind of instance of a given entity.

 For example, TSM entities have an entitytype of 'TSM'

 but a type of single or configmanger. This should

 return a string indicating the kind of entity this is'''

 return

 def setoption(self,option,value):

 '''Set a global option.

 this method should take option and value pair and report on them

 as requried. (IE: TELNET.setoption(self,ShowRawTelnet,yes instructs

 the TELNET entities to begin displaying their raw telnet dialogues)'''

 return

 def getoptions(self):

 '''Get a list of set options.

 Should return a list of the format

 class (entity) option (option) (value) '''

 return

#

END OF INTERFACE Entity

Once a class implementing this interface has been written, it can be integrated into the FatController module, and will then be available as an entity to use.
Frequently Asked Questions
1. I install FatController fine, I load in my profile, or the general profile, but when I try and run commands it fails with ‘error: don’t know which entity to use’

A) When you first start FatController and load a profile, there is no ‘last executed entity’, so if you enter commands and forget the ‘exec / x / execute (entity)’ part FatController complains because it doesn’t know where to execute the command. Try again using the execute command first – or setup a substitution that does it for you.

2. I keep getting ‘KeyErrors’ and FatController crashes.

A) FatController is alpha level software. It’s error checking is lacking. If you are specifying defined names etc.. make sure they are exactly the same – case is important.

3. My TELNET entities keep getting ‘out of synch’ – I see output from a previous command instead of what I just typed.

A) TELNET entities are a very simplistic TELNET implementation. They will improve. In the meantime, if you get the synching problem, just keep sending ‘ls’ commands untill it catches up.

4. VI doesn’t appear to work for a TELNET entity. Nor do any other commands that seem to work with terminal-based interfaces.

A) That’s because it doesn’t work. The TELNET implementation is currently too ‘Dumb’ to be able to negotiate complex terminal-screen handling.

Daemon (TSMDaemon)

Task1 (query scratch)

Task2 (query db)

EntityA

EntityB

EntityA

CollectorA (lto1 scratch)

Collector B (lto2 scratch)

Collector A (db PctUtil)

Alert (low lto1 scratch)

Alert (low lto2 scratch)

csv file

