
Gentle Introduction to Physics in
Games and Demos

Jetro Lauha
Seminar presentation

Assembly 2005, 28th - 31st July 2005

Contents

● Basic components of physical simulation

● Integration to the application

● Physics featured in demoscene releases and
case study of Stair Dismount and sequels

● Questions & Answers

Basic Components of
Physical Simulation

● Kinematics

● Rigid body dynamics

● Constraints and joints

● Collision detection

Kinematics

● Single particle

– Mass

– Position

– Velocity

– Applied forces (e.g. gravity)

● Can be joined together with springs or
constraints

– Jakobsen's Verlet-system as an example (later)

Rigid Body Dynamics

● Extension to particle physics

– Orientation

– Angular velocity

– Shape

– Center of mass

– Inertia tensor

● Forces applied to arbitrary point

– Relative to center (typically center of mass)

[Smi04]

Constraints and Joints

● Joints limit degrees of freedom

– position: 3, orientation: 3 – collectively 6

● Constraints, examples:

– limit position to given region

– force position to given plane

– limit angle of hinge joint between given minimum

and maximum angle

[Smi04]

∢=[15° ..75°]

Collision Detection

● Coarse test

● Detailed contact

– position

– normal vector

– penetration depth

● Collision handling

– body & surface material

properties (bounciness,

slippiness) => coefficient

of restitution, friction

forces

A. B.

[Smi04]

Integration to the Application

● Proxy geometries

● Updating simulation

● Use of existing packages (Middleware)

● Verlet integration [Jak01]

– Short look at one specific physics implementation

technique

Proxy Geometries

● Primitive geometries

– approximate given part of

original detailed model

● Physics simulator's
understanding of the model

– Rendering code handles

modification of detailed model to

match with the proxy geometries

(orientations, skinning)

Updating Simulation

● Game applications contain
several logical clocks

– updating of game logic

– physics simulation

– rendering

● Use fixed size time step
for physics simulation

– Despite of several papers

recommending dynamic one

L
a
st

 F
ra

m
e

su
b
st

e
p

su
b
st

e
p

su
b
st

e
p

N
e
x
t
F
ra

m
e

Simulation Time

Game Time

[McL03, adaptation]

Use of Existing Packages
(Middleware)

● Saves implementation time

● Saves development costs

● Applicability to be carefully evaluated

AI & Planning Player Control Game Logic

Physics

Geometry Database Import and ExportGraphics Pipeline

[McL03, adaptation]

Verlet Integration

● Simple, fast, relatively stable

● Single particles, clothes, plants, ragdolls

● Rigid bodies

– Combined from particles with constraints

– Simple basic building blocks used to create more

complex systems

● Used in Hitman

– Developer by IO Interactive, published by Eidos

[Jak01]

Verlet Integration

x '=2 xx*a⋅ t2

x*=x

[Jak01]

F=ma

x* previous position

2 xx*=xxx*

xx*~v

● Verlet integration

x=xv⋅ t
v=va⋅ t

● Euler integration

Verlet Integration
[Jak01]

#define DAMPING (0.999)
#define TIMESTEPSQ (0.02 * 0.02)

...

// pos,oldPos = position and previous position
// accumForces = combined forces affecting
// the particle

Vector3 pos, oldPos, accumForces;

...

pos += DAMPING * (pos – oldPos) +
 accumForces * TIMESTEPSQ;

Verlet Integration
[Jak01]

Particles too close each other

Particles too far from each other

Constrained to

fixed distance

Body built of

particles and constraints

Verlet Integration
[Jak01]

Separate collision system

with particle system used

to define body rotation

Pin joint (ball-and-socket)

Hinge joint

Physics Featured in
Demoscene Releases

● Some demos
featuring physics
simulation

● Case study: Stair
Dismount and
sequels

Some Demos Featuring
Physics Simulation

Fairlight:

Digital Dynamix

08/2003

Mayoneez and

the boys:

MOPED

08/2004

Lonely Coders:

Cubic Revolution

08/2004

4 KB intro

Nesnausk!:

in.out.side:

the shell

05/2005

Screenshot from pouet.net

Screenshot from pouet.net
Screenshot from pouet.net

Case Study:
Stair Dismount and Sequels

● Porrasturvat (Stair Dismount) – Assembly'02

– Stairs and a ragdoll

● Rekkaturvat (Truck Dismount) – Assembly'03

– Truck and the ragdoll, mini editor (ramps etc.)

● Dismount Levels (Preview) – Assembly'04

– Generic editor, integrated scripting language

– Still in development (looking for contributors)

– Has small community

Case Study:
Stair Dismount and Sequels

● Juice used to model ragdoll

● Use of open source libraries have saved a lot
of effort and time with development

– SDL, SDL_image, SDL_mixer, FMOD, zlib, CFL,

libpng, libjpeg, ODE, libcurl, expat, libogg,

AngelScript, TinyXml, Mersenne Twister

– Turska – limited but simple framework/UI library as

spin off from the games, features-added-as-needed

 http://turska.sourceforge.net (v0.1.1)

Case Study:
Stair Dismount and Sequels

Ragdoll model in Juice

Case Study:
Stair Dismount and Sequels

Case Study:
Stair Dismount and Sequels

[Smi04]

Case Study:
Stair Dismount and Sequels

Case Study:
Stair Dismount and Sequels

Questions & Answers

● My home page: http://jet.ro

– This presentation will be available there.

● Other links

– ODE: http://ode.org

– Dismount games: http://jet.ro/dismount/

– Juice: http://www.natew.com/juice/

Jak01 Jakobsen, T., Advanced Character Physics, Game Developers Conference, 2001.
http://www.gdconf.com/archives/2001/ [2005-06-21]
http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml [2005-06-21]

McL03 McLaurin, M., Outsourcing Reality: Integrating a Commercial Physics Engine, 2003.
http://www.gamasutra.com/resource_guide/20030121/maclaurin_01.shtml [2005-06-21]

Smi04 Smith, R., Open Dynamics Engine User Guide, 2001-2004.
http://ode.org/ode-latest-userguide.html [2005-06-21]

