
File size optimisation master class

Marcus Winter aka muhmac/freestyle
http://20to4.net/

Ideas and Techniques
for smaller Executables

Agenda

Compression Basics

The 20to4 Executable Compressor

The SuShI Introsystem

Compression Basics

 Entropy

 Describes disorder in a file

 Calculated based on probability of symbols

 Smaller entropy means less symbols

 Compression increases entropy

 See the following pages

 http://datacompression.info/

 http://www.maximumcompression.com/

Compression Algorithms
Pattern Matching

 Simple Example

 Low memory requirements

 Decompressor can be kept small

 Normally, compression is slower than decompression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Input D R D O B B S _ D R D O B B S _ D R _ D O
Literal D R [] O B [] S _ [- - - - - - - -] [] []
Match -2 -1 -8 -3 -9

1 1 10 1 2

Encoding: Prefixes
0 – literal
10 – 1 byte match, 4 bit for offset
11 – longer match, 4 bit offset, 4 bit length

Original: 21*8 = 168 bits
Encoded: 6*9+3*6+2*10 = 92 bits

Compression Algorithms
Huffman Encoding

 Example

 Tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Input D R D O B B S _ D R D O B B S _ D R _ D O
Code 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1
1 0 1 0 1 0 1 0 1 0 0

DB_ROS 21

Root Node

Char Freq

Node

_ 3

0

B 4

1

D 6

0

R 3

1

O 3

0

S 2

1

DB 10

0

_ROS 11

1

OS 5

1

_R 6

0

Original: 21*8 = 168 bits
Encoded: 10*2+11*3 = 53 bits

D
B
_

D
B
_
R

D R D O
S

B
_
R
O
S

O
S

B
_
R
O
S

Compression Algorithms
Range Coding

 Example

 Low memory requirements

 Fast decompression

 Limited accuracy is a problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Symbol Probability Cumulative

Input D R D O B B S _ D R D O B B S _ D R _ D O D 0,29 0

Code 0 0,
18

0,
18

0,
19 B 0,19 0,29

_ 0,14 0,48

R 0,14 0,62

O 0,14 0,76

S 0,1 0,9

Recursive embedding of probability intervals
Resulting value identifies input stream

Simplicity and Reuse

 Simple code

 Code compresses only 2:1 (usually even less)

 Data can be layed out for optimal compression performance

 Data driven architectures usually perform better

 Virtual machine is a good choice

 Reuse of code is critical

 Less code in the executable

 Good side effect: less errors

 Lots of the subroutines for sound and graphics are quite similar

 Example: Interpolators can be shared easily

20to4
Concept

 Improvement of compression of 4k intros

 Decompressor size is critical

 Target OS is Windows

 Optimisation of PE File structure

 Headers

 Sections

 Imports

 Microsoft CAB compression

20to4
PE Files

 Concept

 Image of memory block

 Unused parts are left out

 Directory

 Offsets and sizes of
imports and exports

 Section headers

 Relative location and size in memory

 Location and size in file

 Protection information

 Image pages

 Contain actual data

 Must be aligned

PE File Layout
DOS Header

Offset to PE Header
DOS Stub & Relocations

PE Header
Optional Header

Directory

Section Headers

Image Pages

20to4
PE File Optimisiation

 Header cleanup

 Most of the values in the headers are not checked

 Headers can be interleaved

 Section realignment

 Removal of trailing zeroes

 Sections are initialised to zero up to their virtual size

 Merging sections

 Sections can be combined into a single section

 Protection suffers, but file usually compresses better

 Reorganisation of imports

 Import by name

 Import by number

 Hashed import

20to4
CAB Files

 Compression

 MSZIP – bad performance on small files

 LZX – better than apack or upx

— Pattern Matching, Lazy Matching

— Matches are encoded using Huffman Encoding

 Decompression

 Batch File

— Output file will be a batch

— Decompression code resides in the file name field

 Exe file

— Functions from cabinet.dll

— Interleaved headers

— Decompression code resides between headers and first section

20to4
Decompressor

 Batch file

 PE exe decompressor

 set t=%temp%\x.exe

 del %t%

 extrac32 %0 %t%

 %t%

 del %t%

 exit

SuShI Introsystem
Basic Ideas

 Virtual machine

 Supershape object generator

 OpenGL texture generator

 Modular softsynth

 Scripting engine

 Optimising script compiler

 Tools for ease of scripting

SuShI Introsystem
Virtual Machine

 Organisation

 4096 float/int registers

 Separate code and data streams

 Instructions work on register ranges, only base register is specified

 Some instructions require buffers (eg. reverb effect)

 Instruction selected from code stream

 Instruction reads from the data stream and advances the data
pointer

 Instructions

 Specification of geometry, materials, lighting and camera setup

 Generating of geometry and textures

 Interpolators, Oscillators

 Data movement

SuShI Introsystem
Scripting Engine

 XML format

 Easy and reliable parsing

 Flexible and easily extendable

 Versioning is no problem

 Scripting

 Scripts are generated by tools

 Scripting by hand should be possible
(easy reordering and optimising)

 Interpolation instructions are main means of scripting

 Oscillators from soundcode can be used too

SuShI Introsystem
Example Script

SuShI Introsystem
Script Compiler

 Features

 Pattern analysis

 Instruction independence check

 Data/State flow analysis

 Scriptcode reordering

 Removal of unnecessary statements

 Facts

 15000 lines of code

 Optimisations lead to compression ratios up to 10:1

 Without them compression ratio was about 4:1

SuShI Introsystem
Tools

 Tools as plugins for standard software

 Artists do not need to learn a new interface

 Additional functionality can be embedded in a „subinterface“

 Modelling

 Cinema 4D object plugins

 Standard materials

 Texturing

 Custom texture generator

 Embedded in Cinema 4D as a shader

 Sound

 Custom software synth

 Any MIDI sequencer can be used

 Sound can be „programmed“ directly in the synth

SuShI Introsystem
Object Generator

SuShI Introsystem
Texture Generator

SuShI Introsystem
Software Synth

End

 Have a nice day!

