The neglected art of Fixed Point arithmetic

Jetro Lauha
Seminar Presentation

Assembly 2006, $3^{\text {rd }}-6^{\text {th }}$ August 2006
(Revised: September 13, 2006)

Contents

- Motivation
- Introduction
- Typically needed functions
- Caveats and tricks
- Tips for making a fixed point library

Motivation

- Man sent himself to moon, and space probes even beyond that. Do you think the hardware used to accomplish those feats had fancy FPU to do all the calculations?
- They used RCA 1802.
- Processing power equals roughly 6502 or 6510, used in Apple II and Commodore 64.

Motivation

- But it's a lot of work.
- 30\% of the Apollo software development effort was spent on scaling. [KrL64]
- So they eventually switched to floating point when hardware got better.

Motivation

- So why am I talking about this?
- Well, at least it's COOL, in retro-way:

This is how demo \& game coders did their 3D stuff 15 years ago and made some pretty cool stuff even with the minuscule CPU power.

- But does that matter anymore - except if you are going to take part in the old school demo competition with some retro stuff?

Motivation

- There's still plenty of platforms where using only fixed point (integer) calculations is still very relevant.
- Mobile devices (Typical: ARM CPU, no FPU)
- Almost all mobile phones (J2ME or native code)
- Handheld consoles (Gameboy, Nintendo DS)
- DSP Programming
- There's both fixed \& floating point DSPs

Motivation

- ...continued...
- OpenGL ES is the standard for embedded 3D.
- Profiles for both fixed point and floating point, but often only Common-Lite profile is provided (no floating point).
- Fixed point is often still a bit faster on desktop than floating point.
- Stable calculations across platforms
- Floating point calculations are prone to slight differences based on compiler, CPU and other dependencies.

Introduction

- Basics
- Notation
- Range and precision
- Conversion
- Basic operations: + - * /

Introduction:

Basics

- What are the fixed point numbers in "layman's" terms?
- Scale all real numbers by a constant factor, such as 65536, round to nearest integer and and store the numbers as integers.
- This allows you to represent an evenly distributed subset of real numbers roughly from -32768 to 32767 (with 32-bit signed integers and factor of 65536).

Introduction: Basics

- More exactly, you are dividing your range of values to two parts - the integer part and fractional part.

Introduction: Notation

- Notations:

$$
\begin{aligned}
& \text { - M.N, e.g. } 16.16 \\
& \text { - QN (Q factor), e.g. Q16 }
\end{aligned}
$$

- M is number of integer bits and N is number of fractional bits.

Introduction: Range and precision

- Range: defined by the integer (upper) part.
- 16.16 (signed): range is [-32768, 32767]
- Precision: smallest difference between two successive numbers is $1 / 2^{\mathrm{N}}$.
- 16.16: 1/65536 (~0.000015258789)

Introduction: Conversion

- Conversion from real to fixed point number
- Multiply by 2^{N} and round to nearest integer
- (int) (\mathbf{R} * ($1 \ll \mathbf{N}$) + ($\mathbf{R}>=0$? 0.5 : -0.5))
- Conversion from fixed point to real number
- Cast to real and divide by 2^{N}
- (float)F / ($1 \ll \mathbf{N}$)
- Conversion from/to integers (lossless)
- Shift N bits up or down (scaling by 2^{N})
- $\mathrm{F}=\mathrm{I} \ll \mathrm{N}, \mathrm{I}=\mathrm{F} \gg \mathrm{N}$

Introduction: Basic operations

- Addition (+) and subtraction (-)
- Same as adding and subtracting integers
- Multiplication (a * b)
- Multiply as integers and divide result by 2^{N}.
- $\left(\begin{array}{ll}(a+b) \rightarrow>\end{array}\right.$
- That overflows very easily, as both a and b are fixed point numbers!
- If both a and b are 2.0 (131072) as 16.16 fixed point (a * b) == 17179869184-32 bits isn't enough!

Introduction: Basic operations

- For multiplication, the intermediate result from ($\mathrm{a} * \mathrm{~b}$) is in 2M:2N (Q2N) format
- Store intermediate value in double sized integer format. That is, for 32 -bit 16.16 fixed point numbers, you need a 64-bit integer to store the 32.32 (Q32) intermediate result.

Introduction: Basic operations

- Division (a / b)
- Multiply a by 2^{N} and divide by b (as integers).

- Again, intermediate result is prone to overflowing, so the correct way for 16.16 is:
-(((INT64)a << N) / b)
- See references for more detailed introductory texts to fixed points. [VvB04, Str04, WikF]

Typically Needed Functions

- Sine and cosine: $\sin (x), \cos (x)$
- Arcus tangent: atan2 (y, x)
- Square root: sqrt(x)
- Try CORDIC

Typically Needed Functions: Sine and cosine

- Typical approach is to use a look-up table.
- Requires memory proportional to desired accuracy
- Requires some storage space to load table from or time for pre-calculating table on startup
- Can interpolate between sampled values to gain some more accuracy
- Note that it's enough to calculate m/4 entries to table, rest of the samples can be mirrored and transformed from those.

Typically Needed Functions: Sine and cosine

- It's possible to find or construct less accurate approximations for functions if you need smaller code, memory usage or more speed.
- DSP coders have some quite nice tricks. [Beno6]
- See also [Str04] for code example of how to calculate sin, cos and tan algorithmically using only a small arctan table.

Typically Needed Functions: Square root

- Several fairly good iterative algorithms exist, so I don't recommend using a look-up table.
- Can be as simple as trying out to multiply integers by themselves until you find out the closest one
- Or binary search version of the above
- Ken Turkowski's implementation is probably the most often used one. [Tur94]
- For your convenience, code on the next slide.

Typically Needed Functions: Square root

```
/* The definitions below yield 2 integer bits, 30 fractional bits */
#define FRACBITS 30 /* Must be even! */
#define ITERS (15 + (FRACBITS >> 1))
typedef long TFract;
TFract
FFracSqrt(TFract x)
{
    register unsigned long root, remHi, remLo, testDiv, count;
    root = 0; /* Clear root */
    remHi = 0; /* Clear high part of partial remainder */
    remLo = x; /* Get argument into low part of partial remainder */
    count = ITERS; /* Load loop counter */
    do {
        remHi = (remHi << 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */
        root <<= 1; /* Get ready for the next bit in the root */
        testDiv = (root << 1) + 1; /* Test radical */
        if (remHi >= testDiv) {
        remHi -= testDiv;
        root += 1;
        }
    } while (count-- != 0);
    return(root);
}
[Tur94]
```


Typically Needed Functions: Arcus tangent

- You can try some look-up table tricks, again.
- If fast and rough approximation is enough, implementation can be very simple. [Cap91]
- For accurate results, try using CORDIC (covered next).
- For my favorite approximation (for the time being), check Jim Shima's DSP Trick: FixedPoint Atan2 With Self Normalization. [shi99]

Typically Needed Functions: Try CORDIC

- "COordinate Rotation Dlgital Computer", an algorithm to calculate hyperbolic and trigonometric functions, from 1959. [Wikc]
- Only small look-up tables, bitshifts and additions.
- Use it run-time or to pre-calculate look-up tables. (sin, cos, atan, ...)
- Accurate results
- Not the fastest solution

Caveats And Tricks

- Back to range and precision
- Watch out for division by zero
- Exact results
- Dealing with problems

Caveats And Tricks:

Back to range and precision

- When storing result of $a * b$ to normal sized fixed point (integer) value
- Possible range \& precision for the original values is much more limited than the normal to prevent overflow $\mathbb{\&}$ underflow.
- For storing $a * a$:
- abs(a)<=~181--181*181 = 32761, barely fits in signed 16.16 fixed point number.
- abs(a)>=~0.004--0.004*0.004 = 0.000016, truncated down to 1/65536.

Caveats And Tricks: Back to range and precision

- Similarly, make sure that a/b will stay in range
- When |b| > 1.0
- Check ranges so that result doesn't end up being 0 .
- When |b| < 1.0
- $b>1 /\left(2^{M-1} / a\right)$
- If max value for a is $32, b$ must be at least 0.000991821 ($65 / 65536$) so that a/b fits in 16.16 fixed point number: 32/0.000991821=~32263.
- If b would be one less (64/65536), then a/b will be 32768 , not fitting in [-32768, 32767] 16.16 fixed point value range.

Caveats And Tricks: Watch out for division by zero

- Floating points have "Infinity Arithmetic"
- Even result of division by zero is defined, so you simply get Inf as a result
- Easier to go unnoticed by mistake
- Fixed point (integer) division by zero leads to interrupt or an exception is thrown
- Typically programs just crash at this

Caveats And Tricks: Exact results

- Possible in some cases: modify division involving formulas to keep numerator and denumerator separate, and try to find out final (exact) result by examining those, without doing the division. See [Eri05] for example.
- Generally speaking, it's rare and hard to take advantage of this.

Caveats And Tricks: Dealing with problems

- When troubled by overflows, underflows or accuracy problems
- Try keeping the intermediate result(s) in the bigger (64 bit) format and work out the final result directly from there.
- Use asserts and do other verification checks rigorously, especially in debug builds.
- Compare to results of same calculations done in floating points.

Tips For Making A Fixed Point Library

- There's built-in support... if you code in Ada.
- C/C++ alternatives:
- Code it all in-line, using normal integers
- Use helper macros (conversions, operations)
- Create a real number class with overloaded operators
- Allows to switch easily between floats and fixed points

Tips For Making A Fixed Point Library

- Create debug version of the real number class
- Perform both fixed point and floating point calculations in parallel
- Detect overflow $\&$ underflow conditions
- Detect drifting
- Error/warning asserts and checks can be made run-time togglable
- If you work on J2ME, it's best to inline all calculations yourself for performance.

Other Tidbits

- Nobody noticed that I changed the underlying physics engine from floating point to fixed point in latest version of Pogo Sticker.
- You can do fixed point (integer) abs() without branches. [And05, War02]
- For 32-bit ints:
-result = (v ^ (v >> 31)) - (v >> 31)
- Ridiculously that's patented. But that's not the only way, check the references.

Other Tidbits

- 32-bit signed 0x80000000 (highest bit) is special
-int x; if ($\mathrm{x}<0$) $\mathrm{x}=-\mathrm{x}$;
Doesn't work as expected if $\mathrm{x}==0 \mathrm{x} 80000000$! X will still be 0×80000000 (-2147483648).
- For the above example, solution is to cast result to unsigned int as you know it will not be negative.

References

KrL64	http://www.hq.nasa.gov/office/pao/History/computers/Ch4-2.html - Kreide, H., Lambert, D.W., Computation: Aerospace Computers in Aircraft, Missiles and Spacecraft, Space/Aeronaut., 42, 78 (1964); see also N.H. Herman and U.S. Lingon, Mariner 4 Timing and Sequencing, Astronaut. Aeronaut., 43 (October 1965).
VVB04	Van Verth, J. M., Bishop, L. M., Essential Mathematics for Games \& Interactive Applications - A Programmer's Guide, Morgan Kaufmann, 2004.
Str04	Street, M., A Fixed Point Math Primer, OpenGL ${ }^{\circledR}$ ES Game Development, Course Technology PTR, 2004.
WikF	http://en.wikipedia
Tur94	Turkowski, K., Fixed Point Square Root, Apple Technical Report No. 96, 1994. Also appears in Graphics Gems V, Paeth, A. W. (editor), Academic Press, 1995. See http://www.graphicsgems.org/.
Cap91	Capelli, R., Fast Approximation to the Arctangent, Graphics Gems II, Academic Press, 1991. See http://www.graphicsgems.org/.
Shi99	http://www.dspguru.com/comp.dsp/tricks/alg/fxdatan2.htm - Shima, J., DSP Trick: Fixed-Point Atan2 With Self Normalization, post in comp.dsp newsgroup, Apr 23, 1999.
Ben06	http://www.audiomulch.com/~rossb/code/sinusoids/ - Bencina, R., Fun with Sinusoids, 2006.
WikC	http://en.wikipedia.org/wiki/CORDIC - CORDIC article in Wikipedia, see especially the referenced "CORDIC Bibliography Site" and the C implementation by Peter Knoppers (http://people.csail.mit.edu/hqm/imode/fplib/cordic_code.html).
Eri05	Ericson, C., Numerical Robustness for Geometric Calculations (aka EPSILON is NOT 0.00001!), GDC Proceedings, 2005. Also available from http://realtimecollisiondetection.net/pubs/.
And05	http://graphics.stanford.edu/~seander/bithacks.html - Anderson, S. E., Bit Twiddling Hacks.
War02	Warren, H. S., Hacker's Delight, Addison-Wesley, 2002.

Thank You!

- Questions \& Answers
- If there's time
- Slides will be available from my home page:
- http://jet.ro
- Get some games:
- http://www.skinflake.com

