Welcome to the NetCologne GmbH open source mirroring service!

This machine mirrors various open-source projects. 20 Gbit/s uplink.

If there are any issues or you want another project mirrored, please contact mirror-service -=AT=- netcologne DOT de !

GetFEM: src/getfem/getfem_assembling.h File Reference
GetFEM  5.4.4
getfem_assembling.h File Reference

Miscelleanous assembly routines for common terms. Use the low-level generic assembly. Prefer the high-level one. More...

Go to the source code of this file.

Namespaces

 getfem
 GEneric Tool for Finite Element Methods.
 

Functions

template<typename VEC >
scalar_type getfem::asm_L2_norm (const mesh_im &mim, const mesh_fem &mf, const VEC &U, const mesh_region &rg=mesh_region::all_convexes())
 compute $ \|U\|_2 $, U might be real or complex
 
template<typename VEC1 , typename VEC2 >
scalar_type getfem::asm_L2_dist (const mesh_im &mim, const mesh_fem &mf1, const VEC1 &U1, const mesh_fem &mf2, const VEC2 &U2, mesh_region rg=mesh_region::all_convexes())
 Compute the distance between U1 and U2, defined on two different mesh_fems (but sharing the same mesh), without interpolating U1 on mf2.
 
template<typename VEC >
scalar_type getfem::asm_H1_semi_norm (const mesh_im &mim, const mesh_fem &mf, const VEC &U, const mesh_region &rg=mesh_region::all_convexes())
 compute $\|\nabla U\|_2$, U might be real or complex
 
template<typename VEC1 , typename VEC2 >
scalar_type getfem::asm_H1_semi_dist (const mesh_im &mim, const mesh_fem &mf1, const VEC1 &U1, const mesh_fem &mf2, const VEC2 &U2, mesh_region rg=mesh_region::all_convexes())
 Compute the H1 semi-distance between U1 and U2, defined on two different mesh_fems (but sharing the same mesh), without interpolating U1 on mf2.
 
template<typename VEC >
scalar_type getfem::asm_H1_norm (const mesh_im &mim, const mesh_fem &mf, const VEC &U, const mesh_region &rg=mesh_region::all_convexes())
 compute the H1 norm of U. More...
 
template<typename VEC1 , typename VEC2 >
scalar_type getfem::asm_H1_dist (const mesh_im &mim, const mesh_fem &mf1, const VEC1 &U1, const mesh_fem &mf2, const VEC2 &U2, mesh_region rg=mesh_region::all_convexes())
 Compute the H1 distance between U1 and U2.
 
template<typename VEC >
scalar_type getfem::asm_H2_semi_norm (const mesh_im &mim, const mesh_fem &mf, const VEC &U, const mesh_region &rg=mesh_region::all_convexes())
 compute $\|Hess U\|_2$, U might be real or complex. More...
 
template<typename VEC >
scalar_type getfem::asm_H2_norm (const mesh_im &mim, const mesh_fem &mf, const VEC &U, const mesh_region &rg=mesh_region::all_convexes())
 compute the H2 norm of U (for C^1 elements).
 
template<typename VEC1 , typename VEC2 >
scalar_type getfem::asm_H2_dist (const mesh_im &mim, const mesh_fem &mf1, const VEC1 &U1, const mesh_fem &mf2, const VEC2 &U2, const mesh_region &rg=mesh_region::all_convexes())
 Compute the H2 distance between U1 and U2.
 
template<typename MAT >
void getfem::asm_mass_matrix (const MAT &M, const mesh_im &mim, const mesh_fem &mf1, const mesh_region &rg=mesh_region::all_convexes())
 generic mass matrix assembly (on the whole mesh or on the specified convex set or boundary)
 
template<typename MAT >
void getfem::asm_mass_matrix (const MAT &M, const mesh_im &mim, const mesh_fem &mf1, const mesh_fem &mf2, const mesh_region &rg=mesh_region::all_convexes())
 generic mass matrix assembly (on the whole mesh or on the specified boundary)
 
template<typename MAT , typename VECT >
void getfem::asm_mass_matrix_param (const MAT &M, const mesh_im &mim, const mesh_fem &mf1, const mesh_fem &mf2, const mesh_fem &mf_data, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 generic mass matrix assembly with an additional parameter (on the whole mesh or on the specified boundary)
 
template<typename MAT , typename VECT >
void getfem::asm_mass_matrix_param (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data, const VECT &F, const mesh_region &rg=mesh_region::all_convexes())
 generic mass matrix assembly with an additional parameter (on the whole mesh or on the specified boundary)
 
template<typename MAT , typename VECT >
void getfem::asm_mass_matrix_homogeneous_param (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const VECT &F, const mesh_region &rg=mesh_region::all_convexes())
 generic mass matrix assembly with an additional constant parameter (on the whole mesh or on the specified boundary)
 
template<typename MAT >
void getfem::asm_lumped_mass_matrix_for_first_order_from_consistent (const MAT &M)
 lumped mass matrix assembly from consistent mass matrix
 
template<typename MAT >
void getfem::asm_lumped_mass_matrix_for_first_order (const MAT &M, const mesh_im &mim, const mesh_fem &mf1, const mesh_region &rg=mesh_region::all_convexes())
 lumped mass matrix assembly (on the whole mesh or on the specified boundary)
 
template<typename MAT , typename VECT >
void getfem::asm_lumped_mass_matrix_for_first_order_param (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data, const VECT &F, const mesh_region &rg=mesh_region::all_convexes())
 lumped mass matrix assembly with an additional parameter (on the whole mesh or on the specified boundary)
 
template<typename VECT1 , typename VECT2 >
void getfem::asm_source_term (const VECT1 &B, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT2 &F, const mesh_region &rg=mesh_region::all_convexes())
 source term (for both volumic sources and boundary (Neumann) sources).
 
template<typename VECT1 , typename VECT2 >
void getfem::asm_homogeneous_source_term (const VECT1 &B, const mesh_im &mim, const mesh_fem &mf, const VECT2 &F, const mesh_region &rg=mesh_region::all_convexes())
 source term (for both volumic sources and boundary (Neumann) sources). More...
 
template<typename VECT1 , typename VECT2 >
void getfem::asm_normal_source_term (VECT1 &B, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT2 &F, const mesh_region &rg)
 Normal source term (for boundary (Neumann) condition).
 
template<typename VECT1 , typename VECT2 >
void getfem::asm_homogeneous_normal_source_term (VECT1 &B, const mesh_im &mim, const mesh_fem &mf, const VECT2 &F, const mesh_region &rg)
 Homogeneous normal source term (for boundary (Neumann) condition).
 
template<typename MAT , typename VECT >
void getfem::asm_qu_term (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_d, const VECT &Q, const mesh_region &rg)
 assembly of $\int{qu.v}$ More...
 
template<class MAT , class VECT >
void getfem::asm_stiffness_matrix_for_linear_elasticity (const MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &LAMBDA, const VECT &MU, const mesh_region &rg=mesh_region::all_convexes())
 Stiffness matrix for linear elasticity, with Lamé coefficients.
 
template<class MAT , class VECT >
void getfem::asm_stiffness_matrix_for_homogeneous_linear_elasticity (const MAT &M, const mesh_im &mim, const mesh_fem &mf, const VECT &LAMBDA, const VECT &MU, const mesh_region &rg=mesh_region::all_convexes())
 Stiffness matrix for linear elasticity, with constant Lamé coefficients.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_linear_elasticity_Hooke (MAT &RM, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &H, const mesh_region &rg=mesh_region::all_convexes())
 Stiffness matrix for linear elasticity, with a general Hooke tensor. More...
 
template<typename MAT >
void getfem::asm_stokes_B (const MAT &B, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_p, const mesh_region &rg=mesh_region::all_convexes())
 Build the mixed pressure term $ B = - \int p.div u $.
 
template<typename MAT >
void getfem::asm_stiffness_matrix_for_homogeneous_laplacian (const MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_region &rg=mesh_region::all_convexes())
 assembly of $\int_\Omega \nabla u.\nabla v$.
 
template<typename MAT >
void getfem::asm_stiffness_matrix_for_homogeneous_laplacian_componentwise (const MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_region &rg=mesh_region::all_convexes())
 assembly of $\int_\Omega \nabla u.\nabla v$.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_laplacian (MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 assembly of $\int_\Omega a(x)\nabla u.\nabla v$ , where $a(x)$ is scalar.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_laplacian_componentwise (MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 The same as getfem::asm_stiffness_matrix_for_laplacian , but on each component of mf when mf has a qdim > 1.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_scalar_elliptic (MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 assembly of $\int_\Omega A(x)\nabla u.\nabla v$, where $A(x)$ is a (symmetric positive definite) NxN matrix. More...
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_homogeneous_scalar_elliptic (MAT &M, const mesh_im &mim, const mesh_fem &mf, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 The same but with a constant matrix.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_scalar_elliptic_componentwise (MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 The same but on each component of mf when mf has a qdim > 1.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_homogeneous_scalar_elliptic_componentwise (MAT &M, const mesh_im &mim, const mesh_fem &mf, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 The same but with a constant matrix.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_vector_elliptic (MAT &M, const mesh_im &mim, const mesh_fem &mf, const mesh_fem &mf_data, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 Assembly of $\int_\Omega A(x)\nabla u.\nabla v$, where $A(x)$ is a NxNxQxQ (symmetric positive definite) tensor defined on mf_data.
 
template<typename MAT , typename VECT >
void getfem::asm_stiffness_matrix_for_homogeneous_vector_elliptic (MAT &M, const mesh_im &mim, const mesh_fem &mf, const VECT &A, const mesh_region &rg=mesh_region::all_convexes())
 Assembly of $\int_\Omega A(x)\nabla u.\nabla v$, where $A(x)$ is a NxNxQxQ (symmetric positive definite) constant tensor.
 
template<typename MAT , typename VECT >
void getfem::asm_Helmholtz (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_data, const VECT &K_squared, const mesh_region &rg=mesh_region::all_convexes())
 assembly of the term $\int_\Omega Kuv - \nabla u.\nabla v$, for the helmholtz equation ( $\Delta u + k^2u = 0$, with $K=k^2$). More...
 
template<typename MAT , typename VECT >
void getfem::asm_homogeneous_Helmholtz (MAT &M, const mesh_im &mim, const mesh_fem &mf_u, const VECT &K_squared, const mesh_region &rg=mesh_region::all_convexes())
 assembly of the term $\int_\Omega Kuv - \nabla u.\nabla v$, for the helmholtz equation ( $\Delta u + k^2u = 0$, with $K=k^2$). More...
 
template<typename MAT , typename VECT1 , typename VECT2 >
void getfem::asm_dirichlet_constraints (MAT &H, VECT1 &R, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_mult, const mesh_fem &mf_r, const VECT2 &r_data, const mesh_region &region, int version=ASMDIR_BUILDALL)
 Assembly of Dirichlet constraints $ u(x) = r(x) $ in a weak form. More...
 
template<typename MAT , typename VECT1 , typename VECT2 , typename VECT3 >
void getfem::asm_generalized_dirichlet_constraints (MAT &H, VECT1 &R, const mesh_im &mim, const mesh_fem &mf_u, const mesh_fem &mf_h, const mesh_fem &mf_r, const VECT2 &h_data, const VECT3 &r_data, const mesh_region &region, int version=ASMDIR_BUILDALL)
 Assembly of generalized Dirichlet constraints h(x)u(x) = r(x), where h is a QxQ matrix field (Q == mf_u.get_qdim()), outputs a (under-determined) linear system HU=R. More...
 
template<typename MAT1 , typename MAT2 , typename VECT1 , typename VECT2 >
size_type getfem::Dirichlet_nullspace (const MAT1 &H, MAT2 &NS, const VECT1 &R, VECT2 &U0)
 Build an orthogonal basis of the kernel of H in NS, gives the solution of minimal norm of H*U = R in U0 and return the dimension of the kernel. More...
 

Detailed Description

Miscelleanous assembly routines for common terms. Use the low-level generic assembly. Prefer the high-level one.

Author
Yves Renard Yves..nosp@m.Rena.nosp@m.rd@in.nosp@m.sa-l.nosp@m.yon.f.nosp@m.r
Julien Pommier Julie.nosp@m.n.Po.nosp@m.mmier.nosp@m.@ins.nosp@m.a-tou.nosp@m.lous.nosp@m.e.fr
Date
November 17, 2000.

Definition in file getfem_assembling.h.