This machine mirrors various open-source projects.
20 Gbit/s uplink.
If there are any issues or you want another project mirrored, please contact
mirror-service -=AT=- netcologne DOT de !
GetFEM
5.4.4
|
LU factorizations and determinant computation for dense matrices. More...
Go to the source code of this file.
Functions | |
template<typename DenseMatrix , typename Pvector > | |
size_type | gmm::lu_factor (DenseMatrix &A, Pvector &ipvt) |
LU Factorization of a general (dense) matrix (real or complex). More... | |
template<typename DenseMatrix , typename VectorB , typename VectorX , typename Pvector > | |
void | gmm::lu_solve (const DenseMatrix &LU, const Pvector &pvector, VectorX &x, const VectorB &b) |
LU Solve : Solve equation Ax=b, given an LU factored matrix. | |
template<typename DenseMatrixLU , typename DenseMatrix , typename Pvector > | |
void | gmm::lu_inverse (const DenseMatrixLU &LU, const Pvector &pvector, const DenseMatrix &AInv_) |
Given an LU factored matrix, build the inverse of the matrix. | |
template<typename DenseMatrix > | |
linalg_traits< DenseMatrix >::value_type | gmm::lu_inverse (const DenseMatrix &A_, bool doassert=true) |
Given a dense matrix, build the inverse of the matrix, and return the determinant. | |
template<typename DenseMatrixLU , typename Pvector > | |
linalg_traits< DenseMatrixLU >::value_type | gmm::lu_det (const DenseMatrixLU &LU, const Pvector &pvector) |
Compute the matrix determinant (via a LU factorization) | |
LU factorizations and determinant computation for dense matrices.
Definition in file gmm_dense_lu.h.
size_type gmm::lu_factor | ( | DenseMatrix & | A, |
Pvector & | ipvt | ||
) |
LU Factorization of a general (dense) matrix (real or complex).
This is the outer product (a level-2 operation) form of the LU Factorization with pivoting algorithm . This is equivalent to LAPACK's dgetf2. Also see "Matrix Computations" 3rd Ed. by Golub and Van Loan section 3.2.5 and especially page 115.
The pivot indices in ipvt are indexed starting from 1 so that this is compatible with LAPACK (Fortran).
Definition at line 93 of file gmm_dense_lu.h.